I have the following piece of code, as an example dec_proxy attempts to reverse the effects of the increment operator upon the type that is executed in a complex function call foo - which btw I cannot change the interface of.
#include <iostream>
template<typename T>
class dec_proxy
{
public:
dec_proxy(T& t)
:t_(t)
{}
dec_proxy<T>& operator++()
{
--t_;
return *this;
}
private:
T& t_;
};
template<typename T, typename S, typename R>
void foo(T& t, S& s, R& r)
{
++t;
++s;
++r;
}
int main()
{
int i = 0;
double j = 0;
short k = 0;
dec_proxy<int> dp1(i);
dec_proxy<double> dp2(j);
dec_proxy<short> dp3(k);
foo(dp1,dp2,dp3);
//foo(dec_proxy<int>(i), <---- Gives an error
// dec_proxy<double>(j), <---- Gives an error
// dec_proxy<short>(k)); <---- Gives an error
std::cout << "i=" << i << std::endl;
return 0;
}
The problem is that for the various types I'd like to use dec_proxy I currently require creating a specialized instance of dec_proxy - it seems like a very messy and limited approach.
My question is: What is the correct way to pass such short-lived temporaries as non-const reference parameters?
Taking Stephen's advice, you should look at the answer to How come a non-const reference cannot bind to a temporary object? and simply add a member function that returns a reference dec_proxy
, e.g.:
dec_proxy &ref() { return *this; }
and call foo
:
foo(
dec_proxy<int>(i).ref(),
dec_proxy<double>(j).ref(),
dec_proxy<short>(k).ref());
I'm pretty sure that compiles.