Search code examples
pythonhuggingface-transformers

HuggingFace Transformers model config reported "This is a deprecated strategy to control generation and will be removed soon"


I am training a sequence-to-sequence model using HuggingFace Transformers' Seq2SeqTrainer. When I execute the training process, it reports the following warning:

/path/to/python3.9/site-packages/transformers/generation/utils.py:1219: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation)

Note the HuggingFace documentation link is dead.

I use the following codes:

model = BartForConditionalGeneration.from_pretrained(checkpoint)
model.config.output_attentions = True
model.config.output_hidden_states = True

training_args = Seq2SeqTrainingArguments(
    output_dir = "output_dir_here",
    evaluation_strategy = IntervalStrategy.STEPS, #"epoch",
    optim = "adamw_torch", # Use new PyTorch optimizer
    eval_steps = 1000, # New
    logging_steps = 1000,
    save_steps = 1000,
    learning_rate = 2e-5,
    per_device_train_batch_size = batch_size,
    per_device_eval_batch_size = batch_size,
    weight_decay = 0.01,
    save_total_limit = 3,
    num_train_epochs = 30,
    predict_with_generate=True,
    remove_unused_columns=True,
    fp16 = True,
    push_to_hub = True,
    metric_for_best_model = 'bleu', # New or "f1"
    load_best_model_at_end = True # New
)

trainer = Seq2SeqTrainer(
    model = model,
    args = training_args,
    train_dataset = train_ds,
    eval_dataset = eval_ds,
    tokenizer = tokenizer,
    data_collator = data_collator,
    compute_metrics = compute_metrics,
    callbacks = [EarlyStoppingCallback(early_stopping_patience=3)]
)

trainer.train()

The training process can be completed without any problem, but I am concerned about the deprecation warning. How should I modify the codes to solve the problem?

Version:

  • Transformers 4.28.1
  • Python 3.9.7

Solution

  • Root-Cause

    This is a warning about using the API in the outdated manner (=unsupported soon). However, as of now, the code is fixing this on its own - hence only a warning not a breaking error.

    See these lines in the source code.

    Remedy

    The transformers library encourages the use of config files. In this case, we need to pass a GenerationConfig object early, rather than to set attributes.


    I will first share a clean, simple example:

    from transformers import AutoTokenizer, BartForConditionalGeneration
    
    model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
    tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
    
    ARTICLE_TO_SUMMARIZE = (
        "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
        "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
        "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
    )
    inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
    
    # change config and generate summary
    
    from transformers.generation import GenerationConfig
    
    model.config.max_new_tokens = 10
    model.config.min_length = 1
    gen_cfg = GenerationConfig.from_model_config(model.config)
    gen_cfg.max_new_tokens = 10
    gen_cfg.min_length = 1
    
    summary_ids = model.generate(inputs["input_ids"], generation_config=gen_cfg)
    tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    

    If you try to manipulate the config attributes directly and pass no config, you get a warning. If you pass a GenerationConfig, you are all good. This example is reproducible as a Colab notebook here.


    Now, to the original question. Note that, in general, changing architecture configs of pretrained models is not recommended for incompatibility reasons. This is sometimes possible with extra effort. However, certain config changes are possible upon initialization:

    model = BartForConditionalGeneration.from_pretrained(
         "facebook/bart-large-cnn", 
         attention_dropout=0.123
    )
    

    Here is the fully-working code, corrected for reproducibility and see also this notebook

    from transformers import AutoTokenizer, BartForConditionalGeneration
    from transformers.generation import GenerationConfig
    from transformers import Trainer, TrainingArguments
    from transformers.models.bart.modeling_bart import shift_tokens_right
    from transformers import DataCollatorForSeq2Seq
    
    model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn", attention_dropout=0.123)
    tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
    seq2seq_data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
    
    def get_features(batch):
        input_encodings = tokenizer(batch["text"], max_length=1024, truncation=True)
        
        with tokenizer.as_target_tokenizer():
            target_encodings = tokenizer(batch["summary"], max_length=256, truncation=True)
            
        return {"input_ids": input_encodings["input_ids"], 
               "attention_mask": input_encodings["attention_mask"], 
               "labels": target_encodings["input_ids"]}
    
    dataset_ftrs = dataset.map(get_features, batched=True)
    columns = ['input_ids', 'labels', 'input_ids','attention_mask',] 
    dataset_ftrs.set_format(type='torch', columns=columns)
    
    training_args = TrainingArguments(
        output_dir='./models/bart-summarizer',          
        num_train_epochs=1,           
        per_device_train_batch_size=1, 
        per_device_eval_batch_size=1,   
        warmup_steps=500,               
        weight_decay=0.01,              
        logging_dir='./logs',          
    )
    
    model.config.output_attentions = True
    model.config.output_hidden_states = True
    
    training_args = TrainingArguments(
        output_dir='./models/bart-summarizer', 
        num_train_epochs=1, 
        warmup_steps=500,                                  
        per_device_train_batch_size=1, 
        per_device_eval_batch_size=1, 
        weight_decay=0.01, 
        logging_steps=10, 
        push_to_hub=False, 
        evaluation_strategy='steps', 
        eval_steps=500, 
        save_steps=1e6, 
        gradient_accumulation_steps=16,
    )
    
    trainer = Trainer(
        model=model, 
        args=training_args, 
        tokenizer=tokenizer,                  
        data_collator=seq2seq_data_collator,                  
        train_dataset=dataset_ftrs["train"],                  
        eval_dataset=dataset_ftrs["test"],
    )
    
    assert model.config.attention_dropout==0.123
    
    #trainer.train()