I've followed this tutorial (colab notebook) in order to finetune my model.
model = AutoModelForCausalLM.from_pretrained("finetuned_model")
yields Killed
.
yields
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "lucas0/empath-llama-7b"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(cwd+"/tokenizer.model")
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
yields
AttributeError: /home/ubuntu/empath/lora/venv/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cpu.so: undefined symbol: cget_col_row_stats
I have finetuned a model using PEFT and LoRa:
model = AutoModelForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
torch_dtype=torch.float16,
device_map='auto',
)
I had to download and manually specify the llama tokenizer.
tokenizer = LlamaTokenizer(cwd+"/tokenizer.model")
tokenizer.pad_token = tokenizer.eos_token
to the training:
from peft import LoraConfig, get_peft_model
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, config)
data = pd.read_csv("my_csv.csv")
dataset = Dataset.from_pandas(data)
tokenized_dataset = dataset.map(lambda samples: tokenizer(samples["text"]))
trainer = transformers.Trainer(
model=model,
train_dataset=tokenized_dataset,
args=transformers.TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
warmup_steps=100,
max_steps=100,
learning_rate=1e-3,
fp16=True,
logging_steps=1,
output_dir='outputs',
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)
)
model.config.use_cache = True # silence the warnings. Please re-enable for inference!
trainer.train()
and saved it locally with:
trainer.save_model(cwd+"/finetuned_model")
print("saved trainer locally")
as well as to the hub:
model.push_to_hub("lucas0/empath-llama-7b", create_pr=1)
How can I load my finetuned model?
To load a fine-tuned peft/lora model, take a look at the guanco example, https://stackoverflow.com/a/76372390/610569
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
model_name = "decapoda-research/llama-7b-hf"
adapters_name = "lucas0/empath-llama-7b"
print(f"Starting to load the model {model_name} into memory")
m = AutoModelForCausalLM.from_pretrained(
model_name,
#load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = LlamaTokenizer.from_pretrained(model_name)
tok.bos_token_id = 1
stop_token_ids = [0]
print(f"Successfully loaded the model {model_name} into memory")
You will need an A10g GPU runtime minimally to load the model properly.
For more details see