I decide to create a string-length function in Assembly (using FASM
).
My function takes a string (no matter aligned at 8 bytes or not) and checks if it's aligned at 8 bytes. If it's aligned, the main process (loop) will be begun. Otherwise, first 8 characters will be checked one-by-one, then the string will be aligned at 8 bytes and continue ...
There will be no "end of the memory page" problem since the string will be aligned at 8 bytes boundary anyway and by this alignment, it will never face the end of memory page problem.
But the problem is that I decided to implement its C version too, and I compiled it, and now I have 2 assembly codes, the one I wrote it and the one is written in C and compiled to assembly. The problem is the C version is up to 1.5x faster than my handwritten assembly !!!!!!! In my code, everything is just fine, and I even aligned the jump-points to 16 bytes and there is no nop
running (except one, out of the loop which is kinda nothing (.align8
to .loop
)) !!!
I can't find why my pure assembly code is 1.5x slower than the GCC version !!!
My Assembly source-code :
align 16
slen:
mov r8, rcx
test cl, 7
jz .loop
xor eax, eax
cmp BYTE [rcx], al
je SHORT .ret
cmp BYTE [rcx+1], al
je SHORT .ret1
cmp BYTE [rcx+2], al
je SHORT .ret2
cmp BYTE [rcx+3], al
je SHORT .ret3
cmp BYTE [rcx+4], al
je SHORT .ret4
cmp BYTE [rcx+5], al
je SHORT .ret5
cmp BYTE [rcx+6], al
je SHORT .ret6
cmp BYTE [rcx+7], al
jne SHORT .align8
mov al, 7
ret
align 16
.ret: ret
align 16
.ret1: mov al, 1
ret
align 16
.ret2: mov al, 2
ret
align 16
.ret3: mov al, 3
ret
align 16
.ret4: mov al, 4
ret
align 16
.ret5: mov al, 5
ret
align 16
.ret6: mov al, 6
ret
align 16
.align8:
lea rcx, [rcx+7]
and rcx, (-8)
align 16
.loop: mov rax, QWORD [rcx]
test al, al
jz SHORT .end
test ah, ah
jz SHORT .end.1
test eax, 0x00ff0000
jz SHORT .end.2
test eax, 0xff000000
jz SHORT .end.3
shr rax, 32
test al, al
jz SHORT .end.4
test ah, ah
jz SHORT .end.5
test eax, 0x00ff0000
jz SHORT .end.6
test eax, 0xff000000
jz SHORT .end.7
add rcx, 8
jmp SHORT .loop
align 16
.end: mov rax, rcx
sub rax, r8
ret
align 16
.end.1:
lea rax, [rcx+1]
sub rax, r8
ret
.end.2:
lea rax, [rcx+2]
sub rax, r8
ret
.end.3:
lea rax, [rcx+3]
sub rax, r8
ret
.end.4:
lea rax, [rcx+4]
sub rax, r8
ret
.end.5:
lea rax, [rcx+5]
sub rax, r8
ret
.end.6:
lea rax, [rcx+6]
sub rax, r8
ret
.end.7:
lea rax, [rcx+7]
sub rax, r8
ret
The GCC version :
align 16
slen:
test cl, 7
je .L18
xor eax, eax
cmp BYTE [rcx], 0
je .L1
cmp BYTE [rcx+1], 0
mov eax, 1
je .L1
cmp BYTE [rcx+2], 0
mov eax, 2
je .L1
cmp BYTE [rcx+3], 0
mov eax, 3
je .L1
cmp BYTE [rcx+4], 0
mov eax, 4
je .L1
cmp BYTE [rcx+5], 0
mov eax, 5
je .L1
cmp BYTE [rcx+6], 0
mov eax, 6
je .L1
cmp BYTE [rcx+7], 0
mov eax, 7
je .L1
lea rax, [rcx+7]
and rax, -8
jmp .L47
align 16
.L18:
mov rax, rcx
jmp .L47
align 16
.L40:
test dh, dh
je .L49
test edx, 16711680
je .L50
test edx, 4278190080
je .L51
shr rdx, 32
test dl, dl
je .L52
test dh, dh
je .L53
test edx, 16711680
je .L54
test edx, 4278190080
je .L55
add rax, 8
.L47:
mov rdx, QWORD [rax]
test dl, dl
jne .L40
sub eax, ecx
.L1:
ret
align 16
.L49:
sub rax, rcx
add eax, 1
ret
align 16
.L50:
sub rax, rcx
add eax, 2
ret
align 16
.L51:
sub rax, rcx
add eax, 3
ret
align 16
.L52:
sub rax, rcx
add eax, 4
ret
align 16
.L53:
sub rax, rcx
add eax, 5
ret
align 16
.L54:
sub rax, rcx
add eax, 6
ret
align 16
.L55:
sub rax, rcx
add eax, 7
ret
My function test result :
string length => 336
loop execution times => 10000000
total execution time => 0.772015
GCC function test result :
string length => 336
loop execution times => 10000000
total execution time => 0.522015
What is the problem ? Why my function is 1.5x slower when everything is kinda looks fine? My string is aligned at 8 bytes, so you can skip the first one-by-one process and alignment.
Is there any problem with my label aligning ? Or the problem is from somewhere else?
ABI -> x64 (Windows)
CPU (Test) => i7-7800X
My C test application source-code :
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
unsigned int
slen_by_me(const char *);
unsigned int
slen_gcc(const char *);
int main() {
static const char *str="WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW";
LARGE_INTEGER frequency;
LARGE_INTEGER start;
LARGE_INTEGER end;
double interval;
unsigned int l = 0;
QueryPerformanceFrequency(&frequency);
QueryPerformanceCounter(&start);
for (int i = 0; i < 10000000; i++) {
l += slen_gcc(str);
}
QueryPerformanceCounter(&end);
interval = (double) (end.QuadPart - start.QuadPart) / frequency.QuadPart;
printf("%f\n%u\n", interval, l);
return 0;
}
My object file (with these 2 slen
functions to link to that C tester) creator in FASM :
format MS64 COFF
public slen_gcc
public slen_by_me
section '.text' code readable executable align 64
align 16
slen_gcc:
test cl, 7
je .L18
xor eax, eax
cmp BYTE [rcx], 0
je .L1
cmp BYTE [rcx+1], 0
mov eax, 1
je .L1
cmp BYTE [rcx+2], 0
mov eax, 2
je .L1
cmp BYTE [rcx+3], 0
mov eax, 3
je .L1
cmp BYTE [rcx+4], 0
mov eax, 4
je .L1
cmp BYTE [rcx+5], 0
mov eax, 5
je .L1
cmp BYTE [rcx+6], 0
mov eax, 6
je .L1
cmp BYTE [rcx+7], 0
mov eax, 7
je .L1
lea rax, [rcx+7]
and rax, -8
jmp .L47
align 16
.L18:
mov rax, rcx
jmp .L47
align 16
.L40:
test dh, dh
je .L49
test edx, 16711680
je .L50
test edx, 4278190080
je .L51
shr rdx, 32
test dl, dl
je .L52
test dh, dh
je .L53
test edx, 16711680
je .L54
test edx, 4278190080
je .L55
add rax, 8
.L47:
mov rdx, QWORD [rax]
test dl, dl
jne .L40
sub eax, ecx
.L1:
ret
align 16
.L49:
sub rax, rcx
add eax, 1
ret
align 16
.L50:
sub rax, rcx
add eax, 2
ret
align 16
.L51:
sub rax, rcx
add eax, 3
ret
align 16
.L52:
sub rax, rcx
add eax, 4
ret
align 16
.L53:
sub rax, rcx
add eax, 5
ret
align 16
.L54:
sub rax, rcx
add eax, 6
ret
align 16
.L55:
sub rax, rcx
add eax, 7
ret
align 16
slen_by_me:
mov r8, rcx
test cl, 7
jz .loop
xor eax, eax
cmp BYTE [rcx], al
je SHORT .ret
cmp BYTE [rcx+1], al
je SHORT .ret1
cmp BYTE [rcx+2], al
je SHORT .ret2
cmp BYTE [rcx+3], al
je SHORT .ret3
cmp BYTE [rcx+4], al
je SHORT .ret4
cmp BYTE [rcx+5], al
je SHORT .ret5
cmp BYTE [rcx+6], al
je SHORT .ret6
cmp BYTE [rcx+7], al
jne SHORT .align8
mov al, 7
ret
align 16
.ret: ret
align 16
.ret1: mov al, 1
ret
align 16
.ret2: mov al, 2
ret
align 16
.ret3: mov al, 3
ret
align 16
.ret4: mov al, 4
ret
align 16
.ret5: mov al, 5
ret
align 16
.ret6: mov al, 6
ret
align 16
.align8:
lea rcx, [rcx+7]
and rcx, (-8)
align 16
.loop: mov rax, QWORD [rcx]
test al, al
jz SHORT .end
test ah, ah
jz SHORT .end.1
test eax, 0x00ff0000
jz SHORT .end.2
test eax, 0xff000000
jz SHORT .end.3
shr rax, 32
test al, al
jz SHORT .end.4
test ah, ah
jz SHORT .end.5
test eax, 0x00ff0000
jz SHORT .end.6
test eax, 0xff000000
jz SHORT .end.7
add rcx, 8
jmp SHORT .loop
align 16
.end: mov rax, rcx
sub rax, r8
ret
align 16
.end.1:
lea rax, [rcx+1]
sub rax, r8
ret
.end.2:
lea rax, [rcx+2]
sub rax, r8
ret
.end.3:
lea rax, [rcx+3]
sub rax, r8
ret
.end.4:
lea rax, [rcx+4]
sub rax, r8
ret
.end.5:
lea rax, [rcx+5]
sub rax, r8
ret
.end.6:
lea rax, [rcx+6]
sub rax, r8
ret
.end.7:
lea rax, [rcx+7]
sub rax, r8
ret
Also the C version of slen
int
slen(const char *str) {
const char *start=str;
if(((unsigned long long)str & 7) != 0) {
if(str[0] == 0x00)
return 0;
if(str[1] == 0x00)
return 1;
if(str[2] == 0x00)
return 2;
if(str[3] == 0x00)
return 3;
if(str[4] == 0x00)
return 4;
if(str[5] == 0x00)
return 5;
if(str[6] == 0x00)
return 6;
if(str[7] == 0x00)
return 7;
str=(const char *)(((unsigned long long)str + 7) & (-8));
}
do {
unsigned long long bytes=(*(unsigned long long*)(str));
if((unsigned char)bytes==0x00)
return (int)(str-start);
if((bytes & 0x0000ff00)==0)
return (int)(str-start+1);
if((bytes & 0x00ff0000)==0)
return (int)(str-start+2);
if((bytes & 0xff000000)==0)
return (int)(str-start+3);
bytes >>= 32;
if((unsigned char)bytes==0x00)
return (int)(str-start+4);
if((bytes & 0x0000ff00)==0)
return (int)(str-start+5);
if((bytes & 0x00ff0000)==0)
return (int)(str-start+6);
if((bytes & 0xff000000)==0)
return (int)(str-start+7);
str+=8;
} while (1);
}
Allow me to refer you to one of my Pure Assembly library function (coming soon). According to your question, it's about strlen (which named "str_length" in my library and developed for both Microsoft x64 ABI and System-v AMD64 ABI).
I remember (a few years ago) there was a C/C++ function about this type of string length calculator function.
size_t my_strlen(const char *s) {
size_t len = 0;
for(;;) {
unsigned x = *(unsigned*)s;
if((x & 0xFF) == 0) return len;
if((x & 0xFF00) == 0) return len + 1;
if((x & 0xFF0000) == 0) return len + 2;
if((x & 0xFF000000) == 0) return len + 3;
s += 4, len += 4;
}
}
Even named "FAST strlen" which it's really not that fast. So, i decided to write my own "FAST strlen" in Assembly.
In x86-64, it's possible to load a 8-BYTE chunk into a 64-bit register so why 4-BYTE loading ? (As 'size_t my_strlen(const char *s)'
did)
JCC Erratum
About 'JCC Erratum', still there are too many Skylake CPUs in the world (and by world, i mean DataCenters (check Hetzner datacenter and you find too many Skylake and old CPUs)). It's not optional, you MUST take care of this bad boy. But, it's very important to handle it without adding a NOP
or even prefixes. Because by doing this, you make new problems for other CPUs. You can handle it by creating small new branches and putting some codes into a fresh 32-BYTE chunk (But don't make it too heavy).
TAKE CARE OF LOOP TAIL JUMP
Another subject, is taking care about the loops tail jump. Also again, you MUST make a tail for your loop and using jmp
(unconditional jump) to jump to that tail (because of predictable branches subject (read the Agner Fog document about this bad boy (I love this guy for no reason xD)). Also, As Mr. Peter Cordes mentioned, and if you check the GCC jump method, you find the solution about loop creation and jumps.
TAKE CARE OF BRANCH ALIGNMENT
Yes, take care of branch alignment (16-BYTE boundaries), specially those you jump to, too many times (well, good boy|girl (sorry, no name), it's handled by you).
GCC REALLY ?! WHY NOT MACRO-FUSED ?
Well you (the question starter) did a right thing. You used a register for unaligned condition cmp
so you have the benefit of macro-fusing. But in the code generated by GCC, you can see that cmp BYTE PTR [rcx], 0
is used. This will removes the benefit of macro-fusing from your code (its code actually (GCC)).
Of course, GCC done it to handle the padding but it's really not acceptable.
An example of this situation in uiCA test tool:
0000000000000000 <.text>:
0: 80 39 00 cmp BYTE PTR [rcx],0x0
3: 0f 84 00 00 00 00 je 0x9
9: 38 01 cmp BYTE PTR [rcx],al
b: 0f 84 00 00 00 00 je 0x11
The second cmp
got M flag which stands for 'Macro-fused with previous instruction'.
Macro Fusion is restricted to 16-bit and 32-bit mode only (including 32-bit compatibility sub-mode in x86-64). CMP and TEST can fuse when comparing:
REG-REG. (e.g, CMP EAX,ECX; JZ label) REG-IMM. (e.g., CMP EAX,0x80; JZ label) REG-MEM. (e.g., CMP EAX,[ECX]; JZ label) MEM-REG. (e.g., CMP [EAX],ECX; JZ label)
CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ label)
And finally about the function and its performance test (according to your needs). I bring you the one with Microsoft x64 ABI.
; libASM, independent standard libraries in Assembly (programming-language).
; For more information, please visit the libASM website (www.libasm.com).
; Copyright (C) 2023 Mr. Alireza Saeidipour. All rights reserved.
; Published by SOURCEBRING, under its international legal terms and conditions.
; For more information, please visit the SOURCEBRING website (www.sourcebring.com).
; “FAILURE GUARANTEES SUCCESS”
; — Alireza Saeidipour
align.function
str_length:
mov r8, rcx
test cl, 7
jz @f
xor eax, eax
cmp BYTE [rcx], al
je SHORT .len0
cmp BYTE [rcx+1], al
jne SHORT .unaligned_continue
mov al, 1
ret
align.branch32
.unaligned_continue:
cmp BYTE [rcx+2], al
je SHORT .len2
cmp BYTE [rcx+3], al
je SHORT .len3
cmp BYTE [rcx+4], al
je SHORT .len4
cmp BYTE [rcx+5], al
je SHORT .len5
cmp BYTE [rcx+6], al
je .len6
cmp BYTE [rcx+7], al
je .len7
lea r8, [rcx+7]
and r8, (-8)
jmp @f
align.branch
.len0: ret
align.branch
.len2: mov eax, 2
ret
align.branch
.len3: mov eax, 3
ret
align.branch
.len4: mov eax, 4
ret
align.branch
.len5: mov eax, 5
ret
align.branch
.len6: mov eax, 6
ret
align.branch
.len7: mov eax, 7
ret
align.branch
.return_add7:
lea rax, [r8+7]
sub rax, r9
ret
align.branch
@@: mov r9, rcx
mov ecx, 0x00ff0000
mov edx, 0xff000000
jmp SHORT @f
align.branch32
.loop: test eax, ecx
jz SHORT .return_add2
test eax, edx
jz SHORT .return_add3
shr rax, 32
test al, al
jz SHORT .return_add4
test ah, ah
jz SHORT .return_add5
test eax, ecx
jz SHORT .return_add6
test eax, edx
jz SHORT .return_add7
add r8, 8
@@: mov rax, QWORD [r8]
test al, al
jz SHORT .return
test ah, ah
jnz SHORT .loop
lea rax, [r8+1]
sub rax, r9
ret
align.branch
.return:
mov rax, r8
sub rax, r9
ret
align.branch
.return_add2:
lea rax, [r8+2]
sub rax, r9
ret
align.branch
.return_add3:
lea rax, [r8+3]
sub rax, r9
ret
align.branch
.return_add4:
lea rax, [r8+4]
sub rax, r9
ret
align.branch
.return_add5:
lea rax, [r8+5]
sub rax, r9
ret
align.branch
.return_add6:
lea rax, [r8+6]
sub rax, r9
ret
.size = $ - str_length
And Macros in this source-code:
macro align.function { align 32 }
macro align.branch { align 16 }
macro align.branch32 { align 32 }
This function considered as high-end solution (non-SIMD). You can find SIMD version of this function (9 functions are created only for string length operation) in my library soon (The library will be released by the end of June (2023)).
str_length
str_length_sse2
str_length_avx
str_length_avx2
str_length_avx512bw
str_length_long_sse2
str_length_long_avx
str_length_long_avx2
str_length_long_avx512bw
Test results (based on your parameters and your test tools (function (C)):
string length => 336
loop execution times => 10000000
total execution time => 0.430173
Yes, even faster than the one generated by GCC (0.522015). You will get same result for an unaligned string too.
Also, there is no 'JCC Erratum' problem in my code (The hex string of my function for you to check it).
49 89 c8 f6 c1 07 0f 84 c4 00 00 00 31 c0 38 01
74 3e 38 41 01 75 09 b0 01 c3 90 90 90 90 90 90
38 41 02 74 3b 38 41 03 74 46 38 41 04 74 51 38
41 05 74 5c 38 41 06 74 67 38 41 07 74 72 4c 8d
41 07 49 83 e0 f8 e9 85 00 00 00 90 90 90 90 90
c3 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
b8 02 00 00 00 c3 90 90 90 90 90 90 90 90 90 90
b8 03 00 00 00 c3 90 90 90 90 90 90 90 90 90 90
b8 04 00 00 00 c3 90 90 90 90 90 90 90 90 90 90
b8 05 00 00 00 c3 90 90 90 90 90 90 90 90 90 90
b8 06 00 00 00 c3 90 90 90 90 90 90 90 90 90 90
b8 07 00 00 00 c3 90 90 90 90 90 90 90 90 90 90
49 8d 40 07 4c 29 c8 c3 90 90 90 90 90 90 90 90
49 89 c9 b9 00 00 ff 00 ba 00 00 00 ff eb 21 90
85 c8 74 4c 85 d0 74 58 48 c1 e8 20 84 c0 74 60
84 e4 74 6c 85 c8 74 78 85 d0 74 c4 49 83 c0 08
49 8b 00 84 c0 74 19 84 e4 75 d5 49 8d 40 01 4c
29 c8 c3 90 90 90 90 90 90 90 90 90 90 90 90 90
4c 89 c0 4c 29 c8 c3 90 90 90 90 90 90 90 90 90
49 8d 40 02 4c 29 c8 c3 90 90 90 90 90 90 90 90
49 8d 40 03 4c 29 c8 c3 90 90 90 90 90 90 90 90
49 8d 40 04 4c 29 c8 c3 90 90 90 90 90 90 90 90
49 8d 40 05 4c 29 c8 c3 90 90 90 90 90 90 90 90
49 8d 40 06 4c 29 c8 c3
Warning: Please attention that FASM uses too many NOP
for 'align' directive (instead of using a long NOP
) so don't use this directive when there is no jmp
above of it (As you say, direct access).
Warning: For old CPUs sake, keep your jumps body short and use registers instead of imm
. And always handle 'JCC Erratum' (You lose 1.3x performance for that).
With best-regards.