I am trying to create a new column in a dataframe based upon three other columns: a parent column, specific indicator column, and the value of the combined parent-specific indicator.
Given:
parent specific val
1 a x 10
2 a y 11
3 a z 12
4 b x 20
5 b y 21
6 b z 22
7 c x 30
8 c y 31
9 c z 32
I'm looking to create a new column, say px_val (selecting the x value of each parent), so that the resulting dataframe is:
parent specific val px_val
1 a x 10 10
2 a y 11 10
3 a z 12 10
4 b x 20 20
5 b y 21 20
6 b z 22 20
7 c x 30 30
8 c y 31 30
9 c z 32 30
Code for test df:
df <- data.frame(
parent=c('a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'),
specific=c('x', 'y', 'z', 'x', 'y', 'z', 'x', 'y', 'z'),
val=c(10, 11, 12, 20, 21, 22, 30, 31, 32)
)
I've thought to maybe iterate over the dataframe, storing the x value of a given parent in a variable and assigning that to each parent. But it feels like there has to be a more elegant solution?
We could do it this way:
px_val
will contain values where specific
equals x
for each unique parent -> val[specific == 'x']
.by=...
groups only for this mutate, the advantage is that we do not need a ungroup() thereafter:
library(dplyr) #>= dplyr 1.1.0
df %>%
mutate(px_val = val[specific == 'x'], .by=parent)
parent specific val px_val
1 a x 10 10
2 a y 11 10
3 a z 12 10
4 b x 20 20
5 b y 21 20
6 b z 22 20
7 c x 30 30
8 c y 31 30
9 c z 32 30