I have a pyspark dataframe that contains information about the tables that I have on sql database (creation date, number of rows, etc)
Sample data:
{
"Day":"2023-04-28",
"Environment":"dev",
"DatabaseName":"default",
"TableName":"discount",
"CountRows":31253
}
and I want to write this dataframe to a custom log table that I created on Log Analytics workspace, is it possible?
Thank you !
You use below code to write data into custom log table.
import base64
import hashlib
import hmac
import requests
import datetime
def build_signature(customer_id, shared_key, date, content_length, method, content_type, resource):
x_headers = 'x-ms-date:' + date
string_to_hash = '\n'.join([method, str(content_length), content_type, x_headers, resource])
bytes_to_hash = bytes(string_to_hash, encoding='utf-8')
key_bytes = base64.b64decode(shared_key)
decoded_hash = hmac.new(key_bytes, bytes_to_hash, digestmod=hashlib.sha256).digest()
encoded_hash = base64.b64encode(decoded_hash).decode('utf-8')
authorization = f'SharedKey {customer_id}:{encoded_hash}'
return authorization
def post_log_analytics_data(customer_id, shared_key, body, log_type):
method = 'POST'
content_type = 'application/json'
resource = '/api/logs'
rfc1123date = datetime.datetime.utcnow().strftime('%a, %d %b %Y %H:%M:%S GMT')
content_length = len(body)
signature = build_signature(
customer_id=customer_id,
shared_key=shared_key,
date=rfc1123date,
content_length=content_length,
method=method,
content_type=content_type,
resource=resource)
uri = f'https://{customer_id}.ods.opinsights.azure.com{resource}?api-version=2016-04-01'
headers = {
'Authorization': signature,
'Log-Type': log_type,
'x-ms-date': rfc1123date,
"Content-Type": "application/json"
}
response = requests.post(uri, headers=headers, data=body)
return response.status_code
json_data = <your dataframe>.toJSON().collect()[0]
status_code = post_log_analytics_data(<your workspace id>, <your primary key>, json_data, <log_type>)
print(status_code)
And the results are below,