Search code examples
pythonjsonpandasjson-normalize

Must be list or null Exception when attempting to pandas json_normalize


I have a pandas dataframe containing json data that I am attempting to normalize using pandas json_normalize.

import pandas as pd

df = pd.DataFrame({
                   'id': [0, 1],
                   'j': [{'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}, 'g':[]}}, {'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}, 'g':[]}}]
                 })

dff = pd.json_normalize(df['j'], record_path=['loc'], meta=['id'])
dff


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
File <command-3958878855945685>:6
      1 df = pd.DataFrame({
      2                    'id': [0, 1],
      3                    'j': [{'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}, 'g':[]}}, {'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}, 'g':[]}}]
      4                  })
----> 6 dff = pd.json_normalize(df['j'], record_path=['loc'], meta=['id'])
      7 dff

File /databricks/python/lib/python3.9/site-packages/pandas/io/json/_normalize.py:515, in _json_normalize(data, record_path, meta, meta_prefix, record_prefix, errors, sep, max_level)
    512                 meta_vals[key].append(meta_val)
    513             records.extend(recs)
--> 515 _recursive_extract(data, record_path, {}, level=0)
    517 result = DataFrame(records)
    519 if record_prefix is not None:
    520     # Incompatible types in assignment (expression has type "Optional[DataFrame]",
    521     # variable has type "DataFrame")

File /databricks/python/lib/python3.9/site-packages/pandas/io/json/_normalize.py:497, in _json_normalize.<locals>._recursive_extract(data, path, seen_meta, level)
    495 else:
    496     for obj in data:
--> 497         recs = _pull_records(obj, path[0])
    498         recs = [
    499             nested_to_record(r, sep=sep, max_level=max_level)
    500             if isinstance(r, dict)
    501             else r
    502             for r in recs
    503         ]
    505         # For repeating the metadata later

File /databricks/python/lib/python3.9/site-packages/pandas/io/json/_normalize.py:427, in _json_normalize.<locals>._pull_records(js, spec)
    425         result = []
    426     else:
--> 427         raise TypeError(
    428             f"{js} has non list value {result} for path {spec}. "
    429             "Must be list or null."
    430         )
    431 return result

TypeError: {'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': []}} has non list value {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': []} for path loc. Must be list or null.

Also, there might be some json data where the string would be an empty string. How would I handle that exception? Desired behavior is if the key is not found, there normalize with np.nan.

Expected output:

s.value s.text ps.value ps.text  g.value g.text   g.id  id
0      0.0    xxx      0.0    xxx      2.0    xxx  [0.0]   0
1      0.0    xxx      0.0    xxx      2.0    xxx  [0.0]   1

Solution

  • You json is invalid, you should have a list in loc and you als have a duplicated g key. Also you can't use id as meta as this key doesn't exist in the json.

    With a correct format, this should give:

    df = pd.DataFrame({
                       'id': [0, 1],
                       'j': [{'type': 's', 'loc': [{'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}}]},
                             {'type': 's', 'loc': [{'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}}]}
                            ]
                     })
    
    dff = pd.json_normalize(df['j'], record_path=['loc'])
    

    Output:

      s.value s.text ps.value ps.text g.value g.text
    0     0.0    xxx      0.0     xxx     2.0    xxx
    1     0.0    xxx      0.0     xxx     2.0    xxx
    

    With your current format, assuming no duplication of g you can use:

    df = pd.DataFrame({
                       'id': [0, 1],
                       'j': [{'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}}},
                             {'type': 's', 'loc': {'s': {'value': '0.0', 'text': 'xxx'}, 'ps': {'value': '0.0', 'text': 'xxx'}, 'g': {'value': '2.0', 'text': 'xxx'}}}]
                     })
    
    pd.json_normalize(df['j'].str['loc'])
    

    Output:

      s.value s.text ps.value ps.text g.value g.text
    0     0.0    xxx      0.0     xxx     2.0    xxx
    1     0.0    xxx      0.0     xxx     2.0    xxx