Am not able to declare the model due to problems in input_shape
input_shape = [x_train_scaled.shape[1]]
input_shape
Output -
[6]
model = tf.keras.Sequential(
tf.keras.layers.Dense(units=64, input_shape=input_shape, activation='relu'),
tf.keras.layers.Dense(units=64, activation='relu'),
tf.keras.layers.Dense(units=1)
)
model.summary()
Error shown : TypeError: Sequential.init() takes from 1 to 3 positional arguments but 4 were given
I was trying to declare a sequential model but am getting typeError
From https://www.tensorflow.org/api_docs/python/tf/keras/Sequential#args_1 :
layers: Optional list of layers to add to the model
you need to pass your layers as a list when instantiating the sequential object Instead of individual arguments like you are doing now:
tf.keras.Sequential(
layers=[
tf.keras.layers.Dense(units=64, input_shape=input_shape, activation='relu'),
tf.keras.layers.Dense(units=64, activation='relu'),
tf.keras.layers.Dense(units=1)
],
name=None
)