I have the following JSON;
{
"data": [
{
"gid": "1203715497540179",
"completed": false,
"custom_fields": [
{
"gid": "1203887422469746",
"enabled": true,
"name": "Inputs",
"description": "",
"display_value": null,
"resource_subtype": "text",
"resource_type": "custom_field",
"text_value": null,
"type": "text"
},
{
"gid": "1126427465960522",
"enabled": false,
"name": "T-Minus",
"description": "",
"display_value": "54",
"resource_subtype": "text",
"resource_type": "custom_field",
"text_value": "54",
"type": "text"
}
],
"due_on": "2023-01-25",
"name": "General Information"
}
]
}
And I want to build the following pandas dataframe with it. Basically I want to grab name from custom_fields and make it a column whose value is display_value
name due_on Inputs T-Minus
General Information 2023-01-25 null 54
I don't think this can be done with just normalizing. So I started with:
df = pd.json_normalize(test,
record_path =['custom_fields'],
record_prefix='_',
errors='ignore',
meta=['name', 'due_on'])
This gets me to something like this:
_name _display_value name due_on .....(extra fields that I do not need)
Inputs null General Information
T-Minus 54 General Information
How can I go now from this dataframe to the one I want?
Use pivot
just after pd.json_normalize
:
df = pd.json_normalize(test, # or test['data']?
record_path =['custom_fields'],
record_prefix='_',
errors='ignore',
meta=['name', 'due_on'])
df = (df.pivot(index=['name', 'due_on'], columns='_name', values='_display_value')
.reset_index().rename_axis(columns=None))
Output:
>>> df
name due_on Inputs T-Minus
0 General Information 2023-01-25 None 54