I am trying to concatenate the following two models:
input_layer = Input(shape=(227,227,3))
model1 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu' ),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
])(input_layer)
model2 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu', dilation_rate=(3)),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
])(input_layer)
merged_model = Concatenate()([model1, model2])
merged_model = Flatten()(merged_model)
merged_model = Dense(1024, activation='relu')(merged_model)
merged_model = Dense(4, activation='softmax')(merged_model)`
but it's showing an error:
A
Concatenate
layer requires inputs with matching shapes except for the concatenation axis. Received: input_shape=[(None, 5, 5, 60), (None, 4, 4, 60)]
I tried ChatGPT and it is asking me to use Flatten function and flatten model 2 but then it will convert to KerasTensor and that won't compile. I need suggestions on how to fix this or how to change the dilation rate so that both the input shapes become the same. Chat GPT gave me this approach:`
model1 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu' ),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu'),
MaxPooling2D((2,2)),
])(input_layer)
model2 = Sequential([
Conv2D(20, kernel_size=(5,5), activation='relu', dilation_rate=(3)),
MaxPooling2D((2,2)),
Conv2D(30, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(40, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
MaxPooling2D((2,2)),
Conv2D(50, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
Conv2D(60, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
MaxPooling2D((2,2)),
])(input_layer)
model1 = Flatten()(model1)
model2 = Flatten()(model2)
merged_model = Concatenate()([model1, model2])
merged_model = Dense(1024, activation='relu')(merged_model)
merged_model = Dense(4, activation='softmax')(merged_model)`
I compiled it without any problem. Here is the code:
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow import keras
input_layer = layers.Input(shape=(227,227,3))
input_layer = layers.Input(shape=(227,227,3))
model1_out = keras.Sequential([
layers.Conv2D(20, kernel_size=(5,5), activation='relu' ),
layers.MaxPooling2D((2,2)),
layers.Conv2D(30, kernel_size=(3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(40, kernel_size=(3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(50, kernel_size=(3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
layers.Conv2D(60, kernel_size=(3,3), activation='relu'),
layers.MaxPooling2D((2,2)),
])(input_layer)
model2_out = keras.Sequential([
layers.Conv2D(20, kernel_size=(5,5), activation='relu', dilation_rate=(3)),
layers.MaxPooling2D((2,2)),
layers.Conv2D(30, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
layers.MaxPooling2D((2,2)),
layers.Conv2D(40, kernel_size=(3,3), activation='relu', dilation_rate=(2)),
layers.MaxPooling2D((2,2)),
layers.Conv2D(50, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
layers.MaxPooling2D((2,2)),
layers.Conv2D(60, kernel_size=(3,3), activation='relu', dilation_rate=(1)),
layers.MaxPooling2D((2,2)),
])(input_layer)
model1_out = layers.Flatten()(model1_out)
model2_out = layers.Flatten()(model2_out)
merged_out = layers.Concatenate()([model1_out, model2_out])
merged_out = layers.Dense(1024, activation='relu')(merged_out)
merged_out = layers.Dense(4, activation='softmax')(merged_out)
model = keras.Model(input_layer, merged_out)
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy")