Search code examples
pythonmachine-learningscikit-learnrocauc

Python Sklearn auc_roc_curve and roc_curve functions don't seem to match


I have the following Python code to compute both AUC and plot the ROC graphic:

import numpy as np
import sklearn.metrics
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot


testY = np.array([1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 2., 2., 1., 2., 1., 1., 2., 1., 2., 2., 1., 2., 1., 2.,
 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1., 1., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 2.,
 1., 1., 1., 2., 1., 2., 2., 1., 2., 2., 2., 1., 2., 1., 2., 1., 1., 2., 1., 2., 2., 1., 1., 1.,
 2., 2., 1., 1., 1., 2., 1., 1., 2., 2., 1., 1., 1., 2., 1., 1., 2., 1., 2., 1., 1., 2., 1., 1.,
 1., 2., 1., 2., 1., 2., 2., 1., 2., 1., 1., 1., 1., 1., 2., 2.])

predY = np.array([1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00
, 1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 1.00000000e+00, 0.00000000e+00, 1.00000000e+00, 1.00000000e+00
, 1.00000000e+00, 0.00000000e+00, 1.00000000e+00, 1.00000000e+00
, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00
, 6.02987735e-03, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00
, 1.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 1.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 1.00000000e+00, 1.00000000e+00, 0.00000000e+00
, 1.00000000e+00, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00, 1.17126142e-37
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 3.92363570e-44, 0.00000000e+00, 0.00000000e+00
, 1.00000000e+00, 0.00000000e+00, 1.00000000e+00, 1.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 4.22579080e-01
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 3.12829528e-14, 0.00000000e+00, 1.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, 1.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e+00
, 1.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00
, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00])

print(testY.shape)
print(predY.shape)
print(predY.min(), predY.max())
lr_auc = roc_auc_score(testY, predY, labels= [1,2]) 

print(lr_auc) 

ns_probs = np.empty( shape = predY.shape[0] )
ns_probs[:] = 0.5

ns_auc = roc_auc_score(testY, ns_probs, labels= [1,2])
print(ns_auc)

ns_fpr, ns_tpr, _ = roc_curve(testY, ns_probs, pos_label = 1) 
lr_fpr, lr_tpr, _ = roc_curve(testY, predY, pos_label = 1)

print("ROC")
print("lr_fpr")
print(lr_fpr)
print("lr_tpr")
print(lr_tpr)

pyplot.plot(ns_fpr, ns_tpr, linestyle='--', label='')
pyplot.plot(lr_fpr, lr_tpr, marker='.', label="Positive label")
# axis labels
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
# show the legend
pyplot.legend()
# show the plot
pyplot.show()

This is the output I get:

(112,)
(112,)
0.0 1.0
0.5855614973262032 # <--- this is the AUC
0.5
ROC
lr_fpr
[0.         0.36363636 0.36363636 0.45454545 1.        ]
lr_tpr
[0.         0.25       0.26470588 0.26470588 1.        ]

And this is the plot I get:

enter image description here

So clearly the plot has less than 0.5 AUC, why there is this difference?

A few notes:

  • Yes, the labels are 1 and 2. The positive label is 1. It should still work, I think.
  • The array is an actual array of probabilities, between 0 and 1. I'm not sure why it doesn't have a lot of intermediate values, but it should still work because I'm using the same array in both places right?

Solution

  • It appears that the plot is correct and the score is incorrect, assuming your predY is supposed to be the probability of your positive class 1. From the documentation for roc_auc_score:

    y_score [...] The probability estimates correspond to the probability of the class with the greater label