I put the dots: Top left, Bottom left, Bottom right, Top right. The "Warped" window just shows a white screen. I wanted the Warped window to display a distorted image. In the "four_point_transform" function, the "maxWidth" variable almost always gave 0, I do not know what this is related to.
Windows 11 64-bit, python 3.10.7, opencv-contrib-python 4.55.62
import numpy
import cv2
import numpy as np
def on_click(event, x, y, flags, param):
global a_, b_, c_, d_, to_set
if event == cv2.EVENT_LBUTTONDOWN:
print("click")
if to_set == 0:
to_set = 1
a_ = [x, y]
elif to_set == 1:
to_set = 2
b_ = [x, y]
elif to_set == 2:
to_set = 3
c_ = [x, y]
elif to_set == 3:
to_set = 0
d_ = [x, y]
def order_points(pts):
# initialzie a list of coordinates that will be ordered
# such that the first entry in the list is the top-left,
# the second entry is the top-right, the third is the
# bottom-right, and the fourth is the bottom-left
rect = np.zeros((4, 2), dtype="float32")
# the top-left point will have the smallest sum, whereas
# the bottom-right point will have the largest sum
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# now, compute the difference between the points, the
# top-right point will have the smallest difference,
# whereas the bottom-left will have the largest difference
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
# return the ordered coordinates
return rect
def four_point_transform(image, pts):
# obtain a consistent order of the points and unpack them
# individually
rect = order_points(pts)
(tl, tr, br, bl) = rect
# compute the width of the new image, which will be the
# maximum distance between bottom-right and bottom-left
# x-coordiates or the top-right and top-left x-coordinates
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now that we have the dimensions of the new image, construct
# the set of destination points to obtain a "birds eye view",
# (i.e. top-down view) of the image, again specifying points
# in the top-left, top-right, bottom-right, and bottom-left
# order
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# return the warped image
return warped
#cap = cv2.VideoCapture(1, cv2.CAP_DSHOW)
cv2.namedWindow("Corner points")
cv2.setMouseCallback("Corner points", on_click)
to_set = 0
a_ = b_ = c_ = d_ = [0, 0]
while True:
big_img = cv2.imread("Test.png")
#_, big_img = cap.read()
ratio = big_img.shape[0] / 500.0
org = big_img.copy()
img = imutils.resize(big_img, height=500)
cv2.putText(img, f"{to_set}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
values = numpy.array([a_,
b_,
c_,
d_], dtype="float32")
warped = four_point_transform(org, values * ratio)
cv2.circle(img, a_, 5, (0, 0, 255))
cv2.circle(img, b_, 5, (0, 0, 255))
cv2.circle(img, c_, 5, (0, 0, 255))
cv2.circle(img, d_, 5, (0, 0, 255))
cv2.imshow("Warped", warped)
cv2.imshow('Corner points', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()
The code you based your question is taken from an article by Adrian
When trying to debug the code, there seemed to be an error in the order_points
function.
Turns out that Adrian himself has spotted the error.
He actually wrote an article lining out the error and an improved version of the order_points
function.
The working code:
import numpy
import cv2
import numpy as np
from scipy.spatial import distance as dist
def on_click(event, x, y, flags, param):
global a_, b_, c_, d_, to_set
if event == cv2.EVENT_LBUTTONDOWN:
print("click")
if to_set == 0:
to_set = 1
a_ = [x, y]
elif to_set == 1:
to_set = 2
b_ = [x, y]
elif to_set == 2:
to_set = 3
c_ = [x, y]
elif to_set == 3:
to_set = 0
d_ = [x, y]
def order_points(pts):
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
# now that we have the top-left coordinate, use it as an
# anchor to calculate the Euclidean distance between the
# top-left and right-most points; by the Pythagorean
# theorem, the point with the largest distance will be
# our bottom-right point
D = dist.cdist(tl[np.newaxis], rightMost, "euclidean")[0]
(br, tr) = rightMost[np.argsort(D)[::-1], :]
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return np.array([tl, tr, br, bl], dtype="float32")
def four_point_transform(image, pts):
# obtain a consistent order of the points and unpack them
# individually
rect = order_points(pts)
(tl, tr, br, bl) = rect
# compute the width of the new image, which will be the
# maximum distance between bottom-right and bottom-left
# x-coordiates or the top-right and top-left x-coordinates
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
# compute the height of the new image, which will be the
# maximum distance between the top-right and bottom-right
# y-coordinates or the top-left and bottom-left y-coordinates
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# now that we have the dimensions of the new image, construct
# the set of destination points to obtain a "birds eye view",
# (i.e. top-down view) of the image, again specifying points
# in the top-left, top-right, bottom-right, and bottom-left
# order
dst = np.array([
[0, 0],
[maxWidth - 1, 0],
[maxWidth - 1, maxHeight - 1],
[0, maxHeight - 1]], dtype="float32")
# compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
# return the warped image
return warped
#cap = cv2.VideoCapture(1, cv2.CAP_DSHOW)
cv2.namedWindow("Corner points")
cv2.setMouseCallback("Corner points", on_click)
to_set = 0
a_ = b_ = c_ = d_ = [0, 0]
while True:
img = cv2.imread("test1.png")
#_, big_img = cap.read()
ratio = img.shape[0] / 500.0
org = img.copy()
#img = cv2.resize(big_img, fx=ratio, fy=ratio)
cv2.putText(img, f"{to_set}", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0))
values = numpy.array([a_,
b_,
c_,
d_], dtype="float32")
# values = numpy.array(([[160. ,251.],
# [560., 217.],
# [241. ,304.],
# [615., 257.]]))
print(values)
print('\n')
warped = four_point_transform(org, values)
cv2.circle(img, a_, 5, (0, 0, 255))
cv2.circle(img, b_, 5, (0, 0, 255))
cv2.circle(img, c_, 5, (0, 0, 255))
cv2.circle(img, d_, 5, (0, 0, 255))
cv2.imshow("Warped", warped)
cv2.imshow('Corner points', img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyAllWindows()