Based on this answer I have the following code to draw a correlation matrix which only plots data where p<0.05:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
# Simulate 3 correlated variables
num_samples = 100
mu = np.array([5.0, 0.0, 10.0])
# The desired covariance matrix.
r = np.array([
[ 3.40, -2.75, -2.00],
[ -2.75, 5.50, 1.50],
[ -2.00, 1.50, 1.25]
])
y = np.random.multivariate_normal(mu, r, size=num_samples)
df = pd.DataFrame(y)
df.columns = ["Correlated1","Correlated2","Correlated3"]
# Create two random variables
for i in range(2):
df.loc[:,f"Uncorrelated{i}"] = np.random.randint(-2000,2000,len(df))
def corr_sig(df=None):
p_matrix = np.zeros(shape=(df.shape[1],df.shape[1]))
for col in df.columns:
for col2 in df.drop(col,axis=1).columns:
_ , p = stats.pearsonr(df[col],df[col2])
p_matrix[df.columns.to_list().index(col),df.columns.to_list().index(col2)] = p
return p_matrix
p_values = corr_sig(df)
mask = np.invert(np.tril(p_values<0.05))
def plot_cor_matrix(corr, mask=None):
f, ax = plt.subplots(figsize=(11, 9))
sns.heatmap(corr, ax=ax,
mask=mask,
# cosmetics
annot=True,
cmap='coolwarm')
# Plotting with significance filter
corr = df.corr() # get correlation
p_values = corr_sig(df) # get p-Value
mask = np.invert(np.tril(p_values<0.05)) # mask - only get significant corr
plot_cor_matrix(corr,mask)
How can I also also filter out the correlations on the diagonal where features are being compared to themselves (i.e. correlations of 1)?
The tril
function can take k as kwarg. According to the doc:
Diagonal above which to zero elements. k = 0 (the default) is the main diagonal, k < 0 is below it and k > 0 is above.
In your case you'll want k=-1
:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
np.random.seed(1)
# Simulate 3 correlated variables
num_samples = 100
mu = np.array([5.0, 0.0, 10.0])
# The desired covariance matrix.
r = np.array([
[ 3.40, -2.75, -2.00],
[ -2.75, 5.50, 1.50],
[ -2.00, 1.50, 1.25]
])
y = np.random.multivariate_normal(mu, r, size=num_samples)
df = pd.DataFrame(y)
df.columns = ["Correlated1","Correlated2","Correlated3"]
# Create two random variables
for i in range(2):
df.loc[:,f"Uncorrelated{i}"] = np.random.randint(-2000,2000,len(df))
def corr_sig(df=None):
p_matrix = np.zeros(shape=(df.shape[1],df.shape[1]))
for col in df.columns:
for col2 in df.drop(col,axis=1).columns:
_ , p = stats.pearsonr(df[col],df[col2])
p_matrix[df.columns.to_list().index(col),df.columns.to_list().index(col2)] = p
return p_matrix
def plot_cor_matrix(corr, mask=None):
f, ax = plt.subplots(figsize=(11, 9))
sns.heatmap(corr, ax=ax,
mask=mask,
# cosmetics
annot=True,
cmap='coolwarm')
# Plotting with significance filter
corr = df.corr() # get correlation
p_values = corr_sig(df) # get p-Value
mask = np.invert(np.tril(p_values<0.05, k=-1)) # mask - only get significant corr
plot_cor_matrix(corr,mask)
plt.show()