Search code examples
rrankingweighted

How to weight a list of ranks by a numeric value by individual in R


In R I want to allocate projects to people based on their rank preferences but also their performance. Say I have 5 projects and 3 people. In this case, all three people want project A because it's their top preference but Anna should get it because she has the best performance score. Now she's out of the equation and James and Billy are both vying for project B which Billy should get because he's got a better performance measure. How could I do this in R? I will have more projects and people in reality.

Project Rank Person Performance 
A        1   Billy   95
B        2   Billy   95
C        3   Billy   95
D        4   Billy   95
E        5   Billy   95
A        1   Anna    97
B        2   Anna    97
C        3   Anna    97
D        5   Anna    97
E        4   Anna    97
A        1   James   92
B        2   James   92
C        4   James   92
D        3   James   92
E        5   James   92

EDIT

New data in light of issue - see comment to accepted answer.

structure(list(Project = c("1", "2", "3", "4", "5", "6", "7", 
"8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", 
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", 
"30", "31", "32", "33", "1", "2", "3", "4", "5", "6", "7", "8", 
"9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", 
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", 
"31", "32", "33", "22", "17", "2", "5", "6", "14", "26", "27", 
"24", "32", "31", "13", "15", "28", "25", "8", "7", "4", "3", 
"2", "1", "9", "11", "12", "23", "30", "33", "29", "20", "10", 
"19", "16", "18", "1", "2", "3", "4", "5", "6", "7", "8", "9", 
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", 
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", 
"32", "33", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", 
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", 
"22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", 
"33", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", 
"12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", 
"23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", 
"1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", 
"13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", 
"24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "1", 
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", 
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", 
"25", "26", "27", "28", "29", "30", "31", "32", "33", "17", "11", 
"12", "13", "21", "20", "19", "22", "26", "27", "9", "28", "18", 
"1", "2", "3", "4", "5", "6", "7", "8", "10", "14", "15", "16", 
"23", "24", "25", "29", "30", "31", "32", "33", "1", "2", "3", 
"4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", 
"27", "28", "29", "30", "31", "32", "33", "8", "14", "4", "5", 
"6", "9", "17", "11", "12", "13", "7", "21", "22", "2", "3", 
"32", "24", "33", "31", "26", "27", "25", "10", "30", "29", "28", 
"23", "19", "20", "18", "16", "15", "1", "1", "2", "3", "4", 
"5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", 
"27", "28", "29", "30", "31", "32", "33", "1", "2", "3", "4", 
"5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", 
"27", "28", "29", "30", "31", "32", "33", "1", "2", "3", "4", 
"5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", 
"16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", 
"27", "28", "29", "30", "31", "32", "33", "33", "1", "11", "12", 
"13", "31", "30", "3", "4", "10", "2", "5", "6", "7", "8", "9", 
"14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", 
"25", "26", "27", "28", "29", "32", "1", "2", "3", "4", "5", 
"6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", 
"17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", 
"28", "29", "30", "31", "32", "33", "1", "2", "3", "4", "5", 
"6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", 
"17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", 
"28", "29", "30", "31", "32", "33", "1", "2", "3", "4", "5", 
"6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", 
"17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", 
"28", "29", "30", "31", "32", "33", "20", "18", "28", "2", "19", 
"12", "11", "13", "15", "10", "1", "6", "5", "25", "16", "30", 
"9", "21", "33", "23", "31", "8", "17", "22", "27", "26", "32", 
"29", "4", "3", "7", "14", "24", "1", "2", "3", "4", "5", "6", 
"7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", 
"18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", 
"29", "30", "31", "32", "33", "1", "2", "3", "4", "5", "6", "7", 
"8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", 
"19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", 
"30", "31", "32", "33", "1", "2", "3", "4", "5", "6", "7", "8", 
"9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", 
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", 
"31", "32", "33", "1", "2", "3", "4", "5", "6", "7", "8", "9", 
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", 
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", 
"32", "33", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", 
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", 
"22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", 
"33", "17", "21", "29", "19", "31", "18", "8", "22", "16", "13", 
"24", "11", "12", "32", "30", "6", "5", "20", "4", "3", "15", 
"2", "1", "28", "10", "23", "26", "27", "14", "33", "9", "25", 
"7"), Rank = c(10, 26, 24, 25, 20, 21, 33, 4, 1, 16, 29, 30, 
31, 5, 9, 19, 2, 6, 3, 7, 32, 18, 8, 28, 11, 13, 14, 12, 27, 
22, 17, 23, 15, 11, 4, 12, 13, 9, 9, 20, 18, 7, 22, 26, 25, 24, 
27, 23, 33, 6, 10, 28, 29, 32, 5, 30, 8, 3, 2, 1, 14, 31, 19, 
17, 16, 21, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 
32, 33, 10, 4, 2, 2, 26, 26, 24, 21, 5, 9, 14, 14, 14, 22, 1, 
15, 16, 23, 27, 3, 6, 8, 17, 18, 25, 11, 11, 7, 19, 13, 12, 20, 
23, 33, 23, 5, 6, 9, 10, 22, 18, 15, 13, 19, 20, 21, 28, 24, 
29, 2, 14, 7, 27, 1, 3, 12, 4, 8, 16, 17, 11, 30, 25, 31, 32, 
26, 1, 23, 25, 26, 28, 29, 33, 31, 11, 5, 19, 20, 21, 32, 3, 
4, 16, 27, 17, 8, 12, 7, 24, 22, 18, 14, 15, 9, 2, 18, 6, 10, 
30, 13, 19, 27, 28, 12, 11, 4, 7, 29, 26, 16, 17, 18, 10, 20, 
32, 1, 25, 21, 33, 24, 5, 8, 9, 6, 2, 3, 14, 22, 23, 31, 30, 
15, 33, 18, 31, 30, 32, 29, 28, 27, 12, 6, 26, 25, 24, 23, 2, 
3, 10, 9, 4, 5, 14, 21, 13, 19, 11, 8, 7, 1, 17, 22, 15, 16, 
18, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 
27, 17, 6, 7, 1, 2, 26, 12, 25, 13, 3, 4, 5, 24, 18, 19, 30, 
23, 8, 14, 28, 31, 15, 9, 29, 10, 11, 16, 20, 33, 21, 32, 22, 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 22, 
23, 6, 7, 8, 9, 24, 1, 26, 5, 10, 11, 12, 13, 27, 14, 28, 15, 
29, 30, 21, 16, 31, 17, 18, 32, 33, 25, 19, 4, 2, 20, 3, 28, 
20, 19, 18, 15, 11, 12, 13, 23, 5, 6, 9, 25, 21, 8, 1, 17, 2, 
7, 22, 10, 16, 24, 14, 33, 3, 4, 26, 27, 31, 29, 32, 30, 3, 6, 
15, 14, 17, 16, 8, 28, 1, 13, 9, 10, 11, 20, 7, 29, 30, 21, 12, 
2, 4, 19, 18, 22, 31, 32, 33, 5, 26, 27, 24, 25, 23, 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 7, 8, 9, 
10, 15, 14, 16, 8, 17, 29, 18, 19, 20, 21, 6, 30, 3, 18, 22, 
20, 13, 4, 23, 11, 25, 26, 27, 28, 2, 1, 31, 32, 33, 17, 26, 
2, 3, 5, 6, 25, 24, 27, 18, 8, 9, 10, 29, 1, 23, 11, 19, 28, 
13, 20, 12, 14, 30, 31, 32, 33, 15, 29, 16, 4, 7, 21, 31, 25, 
12, 11, 8, 7, 26, 27, 13, 20, 16, 15, 14, 30, 18, 6, 21, 3, 5, 
4, 19, 28, 10, 17, 24, 1, 2, 9, 32, 33, 22, 23, 29, 1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 3, 10, 21, 
17, 15, 9, 23, 24, 7, 8, 13, 6, 11, 25, 1, 26, 4, 33, 31, 32, 
30, 2, 29, 19, 18, 14, 16, 5, 28, 27, 12, 22, 20, 11, 17, 13, 
12, 18, 19, 26, 16, 3, 2, 5, 6, 7, 27, 1, 20, 4, 15, 14, 8, 21, 
28, 22, 10, 33, 30, 29, 9, 32, 31, 25, 24, 23, 23, 22, 1, 2, 
3, 4, 26, 27, 24, 30, 8, 9, 11, 14, 25, 29, 5, 32, 7, 19, 6, 
9, 16, 23, 13, 21, 20, 18, 15, 28, 27, 31, 10, 7, 23, 1, 2, 8, 
9, 3, 22, 21, 20, 4, 5, 6, 12, 17, 18, 19, 16, 15, 33, 25, 24, 
27, 14, 26, 10, 11, 28, 13, 29, 30, 31, 32, 3, 27, 14, 15, 21, 
20, 32, 23, 8, 2, 19, 18, 13, 29, 1, 31, 12, 11, 24, 5, 30, 7, 
16, 10, 33, 26, 25, 28, 9, 22, 4, 6, 17, 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25, 26, 27, 28, 29, 30, 31, 32, 33), Person = structure(c(3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 
9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
11L, 11L, 11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 
14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 
15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 
16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 18L, 18L, 
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 
18L, 18L, 18L, 18L, 18L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 
19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 
20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 
22L, 22L, 22L, 22L, 22L, 22L, 22L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 
23L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 
24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 25L, 25L, 25L, 
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 
25L, 25L, 25L, 25L), levels = c("student M13", "student F6", 
"student L12", "student S19", "student D4", "student V22", "student G7", 
"student H8", "student W23", "student R18", "student N14", "student O15", 
"student Q17", "student I9", "student B2", "student P16", "student C3", 
"student A1", "student K11", "student X24", "student E5", "student U21", 
"student Y25", "student T20", "student J10"), class = "factor"), 
    Performance = c(3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 
    3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 
    3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 
    3.43, 3.43, 3.43, 3.43, 3.43, 3.43, 3.47, 3.47, 3.47, 3.47, 
    3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 
    3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 
    3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.47, 3.23, 
    3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 
    3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 
    3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 
    3.23, 3.23, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 
    3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 
    3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 3.35, 
    3.35, 3.35, 3.35, 3.35, 3.35, 3.23, 3.23, 3.23, 3.23, 3.23, 
    3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 
    3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 
    3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.23, 3.25, 3.25, 
    3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 
    3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 
    3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 3.25, 
    3.25, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 
    2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 
    2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 2.91, 
    2.91, 2.91, 2.91, 2.91, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 
    2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 
    2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 
    2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 2.83, 3.87, 3.87, 3.87, 
    3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 
    3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 
    3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 3.87, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3.07, 3.07, 3.07, 
    3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 
    3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 
    3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 3.07, 
    3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 
    3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 
    3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 3.67, 
    3.67, 3.67, 3.67, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 
    3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 
    3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 
    3.1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
    3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3.5, 3.5, 3.5, 
    3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 
    3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 
    3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.27, 3.27, 3.27, 3.27, 3.27, 
    3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 
    3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 
    3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.27, 3.33, 3.33, 
    3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 
    3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 
    3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 3.33, 
    3.33, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 
    3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 
    3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.1, 3.15, 3.15, 
    3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 
    3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 
    3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 3.15, 
    3.15, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 
    3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 
    3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.57, 3.57, 
    3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 
    3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 
    3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 3.57, 
    3.57, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 
    3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 
    3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 3.56, 
    3.56, 3.56, 3.56, 3.56, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 
    3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 
    3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 
    3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.73, 3.53, 3.53, 3.53, 
    3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 
    3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 
    3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 3.53, 
    3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 
    3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 
    3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2)), row.names = c(NA, 
-825L), class = c("tbl_df", "tbl", "data.frame"))

Solution

  • Using data.table

    library(data.table)
    setDT(df)
    
    setkey(df, Person, Rank)
    person <- df[order(-Performance), unique(Person)]
    project <- Reduce(
      \(project, person) c(project, df[person, setdiff(Project, project)[1]]), 
      person, init = character())
    df[data.table(Person = person, Project = project), on = .(Person, Project)]
    
    #> Key: <Person, Rank>
    #>    Project  Rank Person Performance
    #>     <char> <int> <char>       <int>
    #> 1:       A     1   Anna          97
    #> 2:       B     2  Billy          95
    #> 3:       D     3  James          92