I am building an all-purpose data structure, that I intend to use in various contexts and with various bits of data.
I am currently attempting to make a matcher, that will look into my structure and return all nodes containing the data given. My problem being that, since I need my structure to be as generic as possible, I need my data to be of a generic type matching any
, and this won't allow me to make equalities.
I have built a "descendant type" (there's probably a correct term, I'm self-taught on this) that has the more rigorous comparable
constraint.
I want to see if I can convert from the more general one to the more specific one (even if I have to catch an error and return it to the user). I know that I don't specifically need to, but it makes the code understandable down the line if i do it like that.
Here's a bit of code to explain my question :
type DataStructureGeneralCase[T any] struct {
/*
my data structure, which is too long to make for a good example, so I'm using a slice instead
*/
data []T
}
type DataStructureSpecific[T comparable] DataStructureGeneralCase[T]
// this works because any contains comparable
func (ds *DataStructureSpecific[T]) GetMatching(content T) int {
/*The real function returns my custom Node type, but let's be brief*/
for idx, item := range ds.data {
if item == content {
return idx
}
}
return -1
}
func (dg *DataStructureGeneralCase[T]) TryMatching(content T) (int, error) {
if ds, ok := (*dg).(DataStructureGeneral); ok {
// Does not work because dg is not interface, which I understand
} else {
return -1, fmt.Errorf("Could not convert because of non-comparable content")
}
}
My question can be summarized to "How can I do my conversion ?".
func CheckImplements[T any, I any]() bool {
var o T
_, ok := interface{}(&o).(I)
return ok
}
So yeah, runtime only.