I crawled data from a website which was in string format I replaced string character and now data only contains number. But when I want to convert this column to numeric I get that error. I have two columns which first is previous_prices other is now_prices. If now the product is not on sale program fill nas with previous_prices. Previous_prices type is int64, now_prices type is object. Error is: ValueError: invalid literal for int() with base 10: '\u200d1500'.
Actually I saw a similiar question but that question is not relevant to '\u200d1500'.
now_prices_after_fillna |
---|
1450 |
1500 |
700 |
1700 |
2090 |
There are strange situation when When I change now_prices to integer and then fill na with previous_prices general data type was int. But when I want to export that data to excel I get this error. I can not understand problem.
Because \u200d
is not printable character, here is solution for remove it and converting to integers:
df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500']})
print (df)
now_prices_after_fillna
0 1450
1 1500
#https://stackoverflow.com/a/54451873/2901002
import sys
# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
"""Replace non-printable characters in a string."""
# the translate method on str removes characters
# that map to None from the string
return s.translate(NOPRINT_TRANS_TABLE)
df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
.astype(int))
print (df)
now_prices_after_fillna
0 1450
1 1500
Another idea if mixed numeric with strings values add try
with except statement:
df = pd.DataFrame({'now_prices_after_fillna':['1450', u'\u200d1500', 1000]})
print (df)
#https://stackoverflow.com/a/54451873/2901002
import sys
# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
"""Replace non-printable characters in a string."""
# the translate method on str removes characters
# that map to None from the string
try:
return s.translate(NOPRINT_TRANS_TABLE)
except AttributeError:
return s
df['now_prices_after_fillna'] = (df['now_prices_after_fillna'].apply(make_printable)
.astype(int))
print (df)
now_prices_after_fillna
0 1450
1 1500
2 1000
Test your real data:
df = pd.read_excel('your_updated_file2222.xlsx')
#https://stackoverflow.com/a/54451873/2901002
import sys
# build a table mapping all non-printable characters to None
NOPRINT_TRANS_TABLE = {
i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s):
"""Replace non-printable characters in a string."""
# the translate method on str removes characters
# that map to None from the string
try:
return s.translate(NOPRINT_TRANS_TABLE)
except AttributeError:
return s
df['price'] = df['price'].apply(make_printable).astype(int)
print (df)
price
0 1450
1 1500
2 700
3 1700
4 2090
.. ...
206 1500
207 1290
208 1500
209 1560
210 1800
[211 rows x 1 columns]