Search code examples
pythonpython-3.xgoogle-cloud-dataflowapache-beam

Apache Beam pass list as argument - Python SDK


I have an Apache Beam pipeline which would take a list as arguments and use it in the Filter and Map function. Since these would be available as string I had converted using ast.literal_eval on them. Is there any other better way to do the same thing?

import argparse
import ast
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions, GoogleCloudOptions

def run_pipeline(custom_args, beam_args):
    elements = [
     {'name': 'Jim', 'join_year': 2010, 'location': 'LA', 'role': 'Executive assistant'},
     {'name': 'Tim', 'join_year': 2015, 'location': 'NY', 'role': 'Account manager'},
     {'name': 'John', 'join_year': 2010, 'location': 'LA', 'role': 'Customer service representative'},
     {'name': 'Bob', 'join_year': 2020, 'location': 'NJ', 'role': 'Customer service representative'},
     {'name': 'Michael', 'join_year': 2019, 'location': 'CA', 'role': 'Scheduler'},
     {'name': 'Adam', 'join_year': 2010, 'location': 'CA', 'role': 'Customer service representative'},
     {'name': 'Andrew', 'join_year': 2009, 'location': 'TX', 'role': 'Account manager'},
     {'name': 'James', 'join_year': 2017, 'location': 'NJ', 'role': 'Executive assistant'},
     {'name': 'Paul', 'join_year': 2015, 'location': 'NY', 'role': 'Scheduler'},
     {'name': 'Justin', 'join_year': 2015, 'location': 'NJ', 'role': 'Scheduler'}
     ]

    opts = PipelineOptions(beam_args)
    joinYear = [i for i in ast.literal_eval(custom_args.joinYear)]
    selectCols = [i for i in ast.literal_eval(custom_args.selectCols)]

    with beam.Pipeline(options=opts) as p:
        (p 
        | "Create" >> beam.Create(elements) 
        | "Filter for join year in 2010 and 2015" >> beam.Filter(lambda item: item['join_year'] in joinYear) 
        | "Select name and location columns" >> beam.Map(lambda line : {key:value for (key,value) in line.items() if key in selectCols})
        | beam.Map(print)
        )


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--joinYear",required=True)
    parser.add_argument("--selectCols",required=True)


    my_args, beam_args = parser.parse_known_args()
    run_pipeline(my_args, beam_args)

if __name__ == '__main__':
    main()

I run the code above like this python filterlist.py --joinYear='[2010,2015]' --selectCols="['name','location']"

In actual production use I would pass these parameters from a Cloud Function and launch the dataflow job. So was wondering if there is any other better way to do the same following better practise?


Solution

  • Unfortunately you can't directly pass a Python list as program argument.

    You are in the good direction with your choice and your implementation.

    If you need to pass structure like List, Dict, List of Dict, you need to pass it as String in the pipeline option. Then in the job, transform this String to the expected structure.

    It is a kind of serialization(String)/deserialization(Object).

    If you pass by a Cloud Function or another process, you can format and apply the serialization programmatically in your code, for the option.

    For example for a Dict or a List of Dict, you can use :

    • json.dumps for serialization
    • json.loads for deserialization