I want to create a new variable subtracting two variables from two different datasets. But I need that R make the difference only for the values that are referred to the same thing... The "same thing" in my case is the a third variable COD_PROV
which indicates the city.
I need that R make the difference between the Real Wage
variable of dataset 1 and the Real Wage
variable of dataset 2, but only if the COD_PROV
of these real wages is the same.
This is an example of the dataset 1
COD_PROV Real wage
1 1962,18
6 1742,85
5 1541,81
96 1612,2
4 1574
3 1823,53
103 1584,49
2 1666,21
7 1747,81
10 2066,42
8 1498,01
11 1871,34
9 1770,41
15 2240,03
16 1729,17
17 1773,38
13 1832,57
Datset 2 has the same framework, but some values of COD_PROV are missing
COD_PROV Real wage
1 4962,18
6 1542,85
5 3541,81
4 1564
3 1223,53
2 1446,21
7 1557,81
10 2226,42
8 1458,01
11 1843,34
16 1439,17
17 1883,38
13 1992,57
I've tried this
new <- mutate( dataset1, `Wage Difference ` = dataset1$`Real wage` - dataset2$`Real wage` )
but R of course replies
Error in mutate():
ℹ In argument: Wage difference = ... - dataset1$Real wage.
Caused by error:
! Wage difference must be size 105 or 1, not 106.
Run rlang::last_error() to see where the error occurred.
I suppose that the reason is that dataset 2 has less observations than dataset1 ( in particular some values of COD_PROV are missing)... How can I apply the difference only for the same values of COD_PROV ?
I think you should join/merge these together and then calculate the difference.
library(dplyr)
dataset1 %>%
left_join(dataset2, by = "COD_PROV", suffix = c("", ".y")) %>%
mutate(diff = `Real wage` - `Real wage.y`)
# COD_PROV Real wage Real wage.y diff
# 1 1 1962.18 4962.18 -3000
# 2 6 1742.85 1542.85 200
# 3 5 1541.81 3541.81 -2000
# 4 96 1612.20 NA NA
# 5 4 1574.00 1564.00 10
# 6 3 1823.53 1223.53 600
# 7 103 1584.49 NA NA
# 8 2 1666.21 1446.21 220
# 9 7 1747.81 1557.81 190
# 10 10 2066.42 2226.42 -160
# 11 8 1498.01 1458.01 40
# 12 11 1871.34 1843.34 28
# 13 9 1770.41 NA NA
# 14 15 2240.03 NA NA
# 15 16 1729.17 1439.17 290
# 16 17 1773.38 1883.38 -110
# 17 13 1832.57 1992.57 -160
For more information on what join/merge means, see How to join (merge) data frames (inner, outer, left, right), What's the difference between INNER JOIN, LEFT JOIN, RIGHT JOIN and FULL JOIN?.
Data
dataset1 <- structure(list(COD_PROV = c(1L, 6L, 5L, 96L, 4L, 3L, 103L, 2L, 7L, 10L, 8L, 11L, 9L, 15L, 16L, 17L, 13L), "Real wage" = c(1962.18, 1742.85, 1541.81, 1612.2, 1574, 1823.53, 1584.49, 1666.21, 1747.81, 2066.42, 1498.01, 1871.34, 1770.41, 2240.03, 1729.17, 1773.38, 1832.57)), row.names = c(NA, -17L), class = "data.frame")
dataset2 <- structure(list(COD_PROV = c(1L, 6L, 5L, 4L, 3L, 2L, 7L, 10L, 8L, 11L, 16L, 17L, 13L), "Real wage" = c(4962.18, 1542.85, 3541.81, 1564, 1223.53, 1446.21, 1557.81, 2226.42, 1458.01, 1843.34, 1439.17, 1883.38, 1992.57)), row.names = c(NA, -13L), class = "data.frame")