I wish to build a matrix with 10^7
columns and 2500
rows. Since this is too large for my computer, I thought I could create the matrix iteratively. I would like to use the bigsparser
package for storing the matrix on disk.
Here is how I create the first matrix:
library(bigsparser)
library(data.table)
library(Matrix)
nvars <- 10000000 # columns
ncons <- 10 # rows
n_nonzero <- round(0.02*nvars*ncons) # approximate, there may be actually less values
set.seed(13)
# the first table
Amat <- data.frame(
i=sample.int(ncons, n_nonzero, replace=TRUE),
j=sample.int(nvars, n_nonzero, replace=TRUE),
x=runif(n_nonzero)
)
setDT(Amat)
Amat <- unique(Amat, by=c("i", "j"))
AmatSparse <- sparseMatrix(
i=Amat[,get("i")], j=Amat[,get("j")], x=Amat[,get("x")],
dims=c(2500, 10^7L)
)
AmatSFBM <- as_SFBM(AmatSparse, backingfile="sparsemat", compact = FALSE)
As you can see, I know the dimensions of the final matrix beforehand and have set it accordingly.
Now I want to add some rows, like that:
for (iter in 2:250) {
Amat <- data.frame(
i=sample.int(ncons, n_nonzero, replace=TRUE),
j=sample.int(nvars, n_nonzero, replace=TRUE),
x=runif(n_nonzero)
)
setDT(Amat)
Amat <- unique(Amat, by=c("i", "j"))
Amat[,i:=i+(iter-1)*500]
# this does not work:
AmatSFBM[Amat[,get("i")], Amat[,get("j")]] <- Amat[,get("x")]
}
However, the ]<-
operator seems not to work for SFBM
objects.
Is there any way to build a SFBM
object other than as_SFBM
from a sparse matrix? For example,
Both would be fine.
The SFBM
class has a method $add_columns()
which you can use to iteratively grow your matrix. Generally, when you are memory constrained, it is a good idea to avoid unnecessary intermediate assignments. In the following piece of code I first write a function to generate the component sparse matrices. Then I create a starting matrix and finally iteratively add the component matrices. I've limited it to 9
iterations for this example, but you can just set it to 249
to get your full matrix.
library(bigsparser)
library(data.table)
library(Matrix)
set.seed(13)
# Function to generate component matrix
generate_sparse_mat <- \(nrow = 2500, ncol = 40000, n_nonzero = round(0.02*nrow*ncol)) {
data.table(
i = sample.int(nrow, n_nonzero, replace = TRUE),
j = sample.int(ncol, n_nonzero, replace = TRUE),
x = runif(n_nonzero)
) |>
unique(by = c("i", "j")) |>
as.list() |>
c(dims = list(c(nrow, ncol))) |>
do.call(what = sparseMatrix)
}
# Starting matrix
mat <- generate_sparse_mat() |>
as_SFBM(compact = FALSE)
# Iteratively add colums
for (k in seq_len(9)) mat$add_columns(generate_sparse_mat(), offset_i = 0)
mat
#> A Sparse Filebacked Big Matrix with 2500 rows and 400000 columns.