I have :
Setting N=3, epsilon=5, and
d = [1 1.5 3 ; 1.5 1 1.5 ; 3 1.5 1] #distance matrix
L_i = [13 69 18] #vector of workers in each workplace
R_n = [27; 63; 10]
I want to find the vector of wages (size N) that solve this system of N equations,
with l all the workplaces.
Do I need to implement an iterative algorithm on the vectors of workers and wages? Or is it possible to directly solve this system ?
I tried this,
w_i = [1 ; 1 ; 1]
er=1
n =1
while er>1e-3
L_i = ( (w_i ./ d).^ϵ ) ./ sum( ( (w_i ./ d).^ϵ), dims=1) * R
er = maximum(abs.(L .- L_i))
w_i = 0.7.*w_i + 0.3.*w_i.*((L .- L_i) ./ L_i)
n = n+1
end
If L and R are given (i.e., do not depend on w_i), you should set up a non-linear search to get (a vector of) wages from that gravity equation (subject to normalising one w_i, of course).
Here's a minimal example. I hope it helps.
# Call Packages
using Random, NLsolve, LinearAlgebra
# Set seeds
Random.seed!(1704)
# Variables and parameters
N = 10
R = rand(N)
L = rand(N) * 0.5
d = ones(N, N) .+ Symmetric(rand(N, N)) / 10.0
d[diagind(d)] .= 1.0
ε = -3.0
# Define objective function
function obj_fun(x, d, R, L, ε)
# Find shares
S_mat = (x ./ d).^ε
den = sum(S_mat, dims = 1)
s = S_mat ./ den
# Normalize last wage
x[end] = 1.0
# Define loss function
loss = L .- s * R
# Return
return loss
end
# Run optimization
x₀ = ones(N)
res = nlsolve(x -> obj_fun(x, d, R, L, ε), x₀, show_trace = true)
# Equilibrium vector of wages
w = res.zero