Search code examples
cmergesort

How can I correctly allocate memory for this MergeSort implementation in C (with the DS I am using)?


My goal here is to perform MergeSort on a dynamic array-like data structure I called a dictionary used to store strings and their relative weights. I'm a student and still learning.

Based on the segfaults I'm getting, I'm incorrectly allocating memory for my structs of type item to be copied over into the temporary lists I'm making. I am not sure how to fix this. Code for mergesort and data structure setup is below.

/////// DICTIONARY METHODS ////////
typedef struct {
  char *item;

  int weight;
} item;

typedef struct {
    item **wordlist;

    //track size of dictionary
    int size;

} dict;

//dict constructor
dict* Dict(int count){  
    //allocate space for dictionary
    dict* D = malloc(sizeof(dict));

    //allocate space for words
    D->wordlist = malloc(sizeof(item*) * count);

    //initial size
    D->size = 0;

    return D;
    
}

//word constructor
item* Item(char str[]){
    //allocate memory for struct
    item* W = malloc(sizeof(item));

    //allocate memory for string
    W->item = malloc(sizeof(char) * strlen(str));

    W->weight = 0;

    return W;

}


void merge(dict* D, int start, int middle, int stop){
    
    //create ints to track lengths of left and right of array
    int leftlen = middle - start + 1;
    int rightlen = stop - middle;


    //create new temporary dicts to store the two sides of the array 
    dict* L = Dict(leftlen);
    dict* R = Dict(rightlen);

    int i, j, k;

    //copy elements start through middle into left dict- this gives a segfault
    for (int i = 0; i < leftlen; i++){
        L->wordlist[i] = malloc(sizeof(item*));
        L->wordlist[i] = D->wordlist[start + i];
    }



    //copy elements middle through end into right dict- this gives a segfault
    for (int j = 0; j < rightlen; j++){
        R->wordlist[j] = malloc(sizeof(item*));
        R->wordlist[j]= D->wordlist[middle + 1 + k];

    }


    i = 0;
    j = 0;
    k = leftlen; 

    while ((i < leftlen) && (j < rightlen)){
        if (strcmp(L->wordlist[i]->item, R->wordlist[j]->item) <= 0) {
            D->wordlist[k] = L->wordlist[i];
            i++;
            k++;
        }

        else{
            D->wordlist[k] = R->wordlist[j];
            j++;
            k++;
        }
    }

    while (i < leftlen){
        D->wordlist[k] = L->wordlist[i];
            i++;
            k++;
    }

      while (j < rightlen){
        D->wordlist[k] = L->wordlist[j];
            j++;
            k++;
    }
    
}

void mergeSort(dict* D, int start, int stop){

if (start < stop) {
    int middle = start + (stop - start) / 2;


    mergeSort(D, start, middle);
    mergeSort(D, middle + 1, stop);


    merge(D, start, middle, stop);



}

I put print statements everywhere and narrowed it down to the mallocs in the section where I copy the dictionary to be sorted into 2 separate dictionaries. Also tried writing that malloc as malloc(sizeof(D->wordlist[start + i])). Is there something else I need to do to be able to copy the item struct into the wordlist of the new struct?


Solution

  • Allocate it all at once, before the merge sort even starts.

    #include <stdlib.h>
    #include <string.h>
    
    // Weighted Word --------------------------------------------------------------
    //
    typedef struct {
      char *word;
      int weight;
    } weighted_word;
    
    // Create a weighted word
    //
    weighted_word* CreateWeightedWord(const char *str, int weight){
        weighted_word* W = malloc(sizeof(weighted_word));
        if (W){
            W->word = malloc(strlen(str) + 1);  // string length + nul terminator
            if (W->word)
                strcpy( W->word, str);
            W->weight = weight;
        }
        return W;
    }
    
    // Free a weighted word
    //
    weighted_word *FreeWeightedWord(weighted_word *W){
        if (W){
            if (W->word) 
                free(W->word);
            free(W);
        }
        return NULL;
    }
    
    // Dictionary (of Weighted Words) ---------------------------------------------
    //
    typedef struct {
        weighted_word **wordlist;  // this is a pointer to an array of (weighted_word *)s
        int size;                  // current number of elements in use
        int capacity;              // maximum number of elements available to use
    } dict;
    
    // Create a dictionary with a fixed capacity
    //
    dict* CreateDict(int capacity){  
        dict* D = malloc(sizeof(dict));
        if (D){
            D->wordlist = malloc(sizeof(weighted_word*) * capacity);
            D->size = 0;
            D->capacity = capacity;
        }
        return D;
    }
    
    // Free a dictionary (and all weighted words)
    //
    dict *FreeDict(dict *D){
        if (D){
            for (int n = 0;  n < D->size;  n++)
                FreeWeightedWord(D->wordlist[n]);
            free(D->wordlist);
            free(D);
        }
        return NULL;
    }
    
    // Add a new weighted word to the end of our dictionary
    //
    void DictAddWord(dict *D, const char *str, int weight){
        if (!D) return;
        if (D->size == D->capacity) return;
        D->wordlist[D->size] = CreateWeightedWord(str, weight);
        if (D->wordlist[D->size])
            D->size += 1;
    }
    
    // Merge Sort the Dictionary --------------------------------------------------
    
    // Merge two partitions of sorted words
    //   words  • the partitioned weighted word list
    //   start  • beginning of left partition
    //   middle • end of left partition, beginning of right partition
    //   stop   • end of right partition
    //   buffer • temporary work buffer, at least as big as (middle-start)
    //
    void MergeWeightedWords(weighted_word **words, int start, int middle, int stop, weighted_word **buffer){
      
        int Lstart = start;   int Rstart = middle;  // Left partition
        int Lstop  = middle;  int Rstop  = stop;    // Right partition
        int Bindex = 0;                             // temporary work buffer output index
        
        // while (left partition has elements) AND (right partition has elements)
        while ((Lstart < Lstop) && (Rstart < Rstop)){
            if (strcmp( words[Rstart]->word, words[Lstart]->word ) < 0)
                buffer[Bindex++] = words[Rstart++];
            else
                buffer[Bindex++] = words[Lstart++];
        }
        
        // if (left partition has any remaining elements)
        while (Lstart < Lstop)
            buffer[Bindex++] = words[Lstart++];
      
    // We don't actually need this. Think about it. Why not?  
    //    // if (right partition has any remaining elements)
    //    while (Rstart < Rstop)
    //        buffer[Bindex++] = words[Rstart++];
    
        // Copy merged data from temporary buffer back into source word list
        for (int n = 0;  n < Bindex;  n++)
            words[start++] = buffer[n];
    }
    
    // Merge Sort an array of weighted words
    //   words  • the array of (weighted_word*)s to sort
    //   start  • index of first element to sort
    //   stop   • index ONE PAST the last element to sort
    //   buffer • the temporary merge buffer, at least as big as (stop-start+1)/2
    //
    void MergeSortWeightedWords(weighted_word **words, int start, int stop, weighted_word **buffer){
        if (start < stop-1){  // -1 because a singleton array is by definition sorted
            int middle = start + (stop - start) / 2;
            MergeSortWeightedWords(words, start, middle, buffer);
            MergeSortWeightedWords(words, middle, stop, buffer);
            MergeWeightedWords(words, start, middle, stop, buffer);
        }
    }
    
    // Merge Sort a Dictionary
    //
    void MergeSortDict(dict *D){
        if (D){
            // We only need to allocate a single temporary work buffer, just once, right here.
            dict * Temp = CreateDict(D->size);
            if (Temp){
                MergeSortWeightedWords(D->wordlist, 0, D->size, Temp->wordlist);
            }
            FreeDict(Temp);
        }
    }
    
    // Main program ---------------------------------------------------------------
    
    #include <stdio.h>
    
    int main(int argc, char **argv){
      
        // Command-line arguments --> dictionary
        dict *a_dict = CreateDict(argc-1);
        for (int n = 1;  n < argc;  n++)
            DictAddWord(a_dict, argv[n], 0);
          
        // Sort the dictionary
        MergeSortDict(a_dict);
      
        // Print the weighted words
        for (int n = 0;  n < a_dict->size;  n++)
            printf( "%d %s\n", a_dict->wordlist[n]->weight, a_dict->wordlist[n]->word );
    
        // Clean up
        FreeDict(a_dict);
    }
    

    Notes for you:

    • Be consistent. You were inconsistent with capitalization and * placement and, oddly, vertical spacing. (You are waaay better than most beginners, though.) I personally hate the Egyptian brace style, but to each his own.

    • I personally think there are far too many levels of malloc()s in this code too, but I will leave it at this one comment. It works as is.

    • Strings must be nul-terminated — that is, each string takes strlen() characters plus one for a '\0' character. There is a convenient library function that can copy a string for you too, called strdup(), which AFAIK exists on every system.

    • Always check that malloc() and friends succeed.

    • Don’t forget to free everything you allocate. Functions help.

    • “Item” was a terribly non-descript name, and it overlapped with the meaning of two different things in your code. I renamed them to separate things.

    • Your dictionary object should be expected to keep track of how many elements it can support. The above code simply refuses to add words after the capacity is filled, but you could easily make it realloc() a larger capacity if the need arises. The point is to prevent invalid array accesses by adding too many elements to a fixed-size array.

    • Printing the array could probably go in a function.

    • Notice how I set start as inclusive and stop as exclusive. This is a very C (and C++) way of looking at things, and it is a good one. It will help you with all kinds of algorithms.

    • Notice also how I split the Merge Sort up into two functions: one that takes a dictionary as argument, and a lower-level one that takes an array of the weighted words as argument that does all the work.

      • The higher-level merge sort a dictionary allocates all the temporary buffer the merge algorithm needs, just once.
      • The lower-level merge sort an array of (weighted_word*)s expects that temporary buffer to exist and doesn’t care (or know anything) about the dictionary object.
      • The merge algorithm likewise doesn't know much. It is simply given all the information it needs.

    Right now the merge condition simply compares the weighted-word’s string value. But it doesn’t have to be so simple. For example, you could sort equal elements by weight. Create a function:

    int CompareWeightedWords(const weighted_word *a, const weighted_word *b){
        int rel = strcmp( a->word, b->word );
        if (rel < 0) return -1;
        if (rel > 0) return  1;
        return a->weight < b->weight ? -1 : a->weight > b->weight;
    }
    

    And put it to use in the merge function:

            if (CompareWeightedWords( words[Rstart], words[Lstart] ) < 0)
                buffer[Bindex++] = words[Rstart++];
            else
                buffer[Bindex++] = words[Lstart++];
    

    I don’t think I forgot anything.