I have DataFrame in Python Pandas like below:
Input data:
Source code of DataFrame:
import pandas as pd
import numpy as np
from xgboost import XGBClassifier
df = pd.DataFrame()
df["Y"] = [1,0,1,0]
df["X1"] = [111,12,150,270]
df["X2"] = [22,33,44,55]
df["X3"] = [1,1,0,0]
df["X4"] = [0,0,0,1]
df["X5"] = [150, 222,230,500]
Y | X1 | X2 | X3 | X4 | X5 | ... | Xn
----|-----|-----|-------|-------|-----|------|-------
1 | 111 | 22 | 1 | 0 | 150 | ... | ...
0 | 12 | 33 | 1 | 0 | 222 | ... | ...
1 | 150 | 44 | 0 | 0 | 230 | ... | ...
0 | 270 | 55 | 0 | 1 | 500 | ... | ...
And I make features selection by deleting features with importance = 0 in each iteration or if the are not features with imporance = 0 I delete features with importance below mean importance in that iteraton:
First iteration:
model_importance = XGBClassifier()
model_importance.fit(X = df.drop(labels=["Y"], axis=1), y = df["Y"])
importances = pd.DataFrame({"Feature":df.drop(labels=["Y"], axis=1).columns,
"Importance":model_importance.feature_importances_})
importances_to_drop_1 = importances[importances["Importance"]==0].index.tolist()
df.drop(columns = importances_to_drop_1, axis = 1, inplace = True)
Second iteration:
model_importance_2 = XGBClassifier()
model_importance_2.fit(X = df.drop(labels=["Y"], axis=1), y = df["Y"])
importances_2 = pd.DataFrame({"Feature":df.drop(labels=["Y"], axis=1).columns,
"Importance":model_importance_2.feature_importances_})
importances_to_drop_2 = importances_2[importances_2["Importance"]<importances_2.Importance.mean()].index.tolist()
df.drop(columns = importances_to_drop_2, axis = 1, inplace = True)
Requirements:
How can I do that in Python ?
Add a for loop to iterate a set number of times and then use a conditional to drop using method 1 or 2 depending if method one has any importances=0 or not.
iterations = 20
for i in range(iterations):
model_importance = XGBClassifier()
model_importance.fit(X = df.drop(labels=["Y"], axis=1), y = df["Y"])
importances = pd.DataFrame({"Feature":df.drop(labels=["Y"], axis=1).columns,
"Importance":model_importance.feature_importances_})
importances_to_drop_1 = importances[importances["Importance"]==0].index.tolist()
if len(df.columns) - len(importances_to_drop_1) <= 150:
break
if len(importances_to_drop_1) > 0:
df.drop(columns = importances_to_drop_1, axis = 1, inplace = True)
else:
importances_to_drop_2 = importances_2[importances_2["Importance"]<importances_2.Importance.mean()].index.tolist()
if len(df.columns) - len(importances_to_drop_2) <= 150:
break
df.drop(columns = importances_to_drop_2, axis = 1, inplace = True)