Search code examples
pythonpython-3.xrsapublic-key-encryptionencryption-asymmetric

How is the random ciphertext in RSA encryption algorithm implemented?


When I used rsa library to encrypt content in Python,
I found that even if the same public key and the same plaintext were used,
the output content was different each time, and the output ciphertext could be decrypted perfectly.
So I want to know how the RSA encryption algorithm implements this algorithm with different encryption results each time.

The following is the source code and the ciphertext output for many times.

import rsa

data = b'hello, world'
pk = rsa.PublicKey(21968272887747488664299300886573437453854580842272801065486318320328573181104433915148345103361664593733184722692105149694142557011266255075972021704711966860643495011049367729520386363274015109405027569939049707059547205662044677513224725454246882263137472476944688288600202939249708651097639414591301098996178101611307541565108035735952182518865647460401330824147744542993709272159435504287548711774248609991298003738752699597664282754244110245104529559246443251024491287411685325071990133422302961361831613169335261576570530061643400976849033234171349450189113706076777344091951159628029458250885131329209309850429, 65537)
sk = rsa.PrivateKey(21968272887747488664299300886573437453854580842272801065486318320328573181104433915148345103361664593733184722692105149694142557011266255075972021704711966860643495011049367729520386363274015109405027569939049707059547205662044677513224725454246882263137472476944688288600202939249708651097639414591301098996178101611307541565108035735952182518865647460401330824147744542993709272159435504287548711774248609991298003738752699597664282754244110245104529559246443251024491287411685325071990133422302961361831613169335261576570530061643400976849033234171349450189113706076777344091951159628029458250885131329209309850429, 65537, 7180742814003184493745817226790609535628314246962295259545720906634095162818242875479619891118201610188935763454388765380592975819694916096822751254380575157372246976924478622789961650274744826184819271605876418277150620865958482714928972468695190683750109638846897363602141498155351308783613387153774908482554823734710213533339079775940427840254792667407339506634483414544868884993644469123554250547973774825288728499603644573043340903253662627022861078040710813466717381393318974263956822836617559198769733538785368579523554468493535497334351910973554355558084517450711717078208243534059900951053098416621979162953, 2892399658197458942905975614589062229163400545478597547382814345027395128547900843767403239802516658965367060847402270250006453487328128143951683257674546551047677883067394312961875875837583648708792776670850392284514504120294996660277476938434444686489314576152155327763997732075822518345380214599954128122325100250621109610911, 7595171996887213720796562116779069406951367089854155042546817829399701614804640519699383335239152053864712615020908685785110173445687693446414448808069297671341400340127530462352491976340390927112062123224788804186559233620266300549932283394695195359373967318632526999572685782623554155939)

print(rsa.encrypt(data, pk)
# 1
b'\x17T\xc0\x03\xa4\xa6\xc06\x83\xdcM\xe5\xf9\xd8t\xc9>\xad}\xc9\x15[\xcc!\x19\x97/\xbf\xc7\xe4\xcbhu\x8d\xfb&\x18\x84\xc8e\xec\xe1\n\xfd$\x92\xda\x12S\x0f\r\xba\x81y\x88E\x9ceu\xd9\xd2Z\xf8\xc3\xd3&\xf2\xf7j\t\t\xf2\xc6w\xf6\x9a7\xbd\x01\x96\xad\xf5\x9e\xf4\xa8,\xd2\x19b\x0f\x05\x0c\xd8G\xe66\x91\x85.\xbdX\x0b\xd9H\xb14\xc6\x88\xb5\xd7\x1f\xed\xf7\xb4\x10\xb7\xad\x9f\xab\x01\r(\r*\xd90\x84\xba\xfb\xd9\x94HK\xdf\xaf\xa0\xf2\x98\x96\xb6*b\xb5\xc0\xa6\xe5A[\x9fwf\x18\x08v\x85\t\xb7\xf7\x97\xc74\xe5{;9qw\xb1u>\t`\xfd\x10\xfbu\xfb\xf5\x11\xe9\xc1\xa0I\x96\x03\xa5\x84\x0b\xcd\x060\xa1\xb1\xbcs|\xfe\xf3N\xad\xddA\xe2l\xf83N\xae\x9c\xbe\x1568\xe9\xf5\xfdn\xe9\xbc\x98\xb5\xb9Bn\xf1]!\x86\xd39\xd2<&\xd6}\x9a\xe2\xa4|\xf0\x9a\xaf\xac\x08^\x93\x174\n~L<+=\x8d\x95'

# 2
b'5\xbc\xb2\xaa\x16\'\xa2\x93\x16D\'S\xfc\x9fm\xc9\xbbF\xa6:dN\x91f\xc1\xaa\x05\xeb\xe4\x16|\xd3\x07#\xd5\xda\xe9\x9b\xd0V\xd4\xb0#Y\xf2G\x0c\xae\xb7A\x9a\xaa\xb8^\xf8\xea\xddj%\xd0\xe8w\xb2\xf1\x9c\xf8D\xcc\x9b\xfe\xea\x16hT\x81\'u`\x10"\xaf\xe3\xd3#\xa0\xc2\x18\x8f^lE\xb0H\xe8\xd5\xf2\x8e\xd8\x8fq;\xd7B]\xc8j\x94\'0\xb0\x80\x0f\xd3\xd1\x90I\x1eL\x91y\x8dA\x01\xda>x`\x0b}6:\xb6o\xcf\xd1=\x15p\xdb\x16\xd3bF\xd5\xc9\\\x86\x1b\xeb\xc4H\x11\x04\xa9o\xe1\xffSF\xe3\xc1\x99\x05\xc44\x03\x86\x81\xbb#>\xfb\xc2\x0bscbW\x0f\xb8\x92\x81\xbb\x19c\xd1n\t\xa4sI\x91+\x97\x9e\x0b\xf1\x8b\xd2;\xa9NV\xc1\xb0#\xd1\xa24P\xce\x93US\xf5\x97=m\xb3\xb6\xd3\x9b\'\xade\x1e\xbc\x80\x13C\x99\x93\x89&\xbd\xde\x83f\\H6\xad2\nFM\xf07q\xe9`\xb1H\x98@X'

# 3
b"'E\xdb\xfd\xe4\xf9\x0c\xe1\xa4l\xaaq\x0e#\xde2\xe9\xe4\x12\xb3\xc2d\xd1W\xde*\x8d<\xcb\x1a\xea\xb4\xb86\x9bV0\r\xef\xfb\xafg\xe8\x1eHzg\x03I\x99ta\xad\x84[r.E\xbb\xc2\xae\xf1\xc2\xafd\xcb\xa6`\xf0)U\x85\xb1\n0\xb2\x05\x17s\xa3\xe3f\xb7\xda\x08\xd1\xae@\xd8\xa7\x90Tce\xc2\xac\xf3Q\x81\xbe1\x92\x8d\xcb\xbf\xfa\x88\xf3'\xe8\xa1\x9e\x9e\xae~\xb90Uq\x98\xe6\x17b\x9d]1\xf6\xabirw\xbc\x89\xae\xd8\xdf\x8a\xf5\xf1\xd4*~\x94\xe38\x1f$\x0e\x94t\xb64\x83q\xf8\x8f\xd6pR\xd4%\xf8\x1cv\xc5\xfe\x8d]\xcfy\xff\xb9\xc7\x10\xaao%\xa8\x13\xce6#Y\xfa\x06\xb8\xab(H^\xd8\x1a\xb63\xb0\xb0c\xe0\x11@\xa9\t\xdd\xa8\\\xeag\xc6H\xa5L\x0b\x10\xdb\xa9\xc44\xdcZ\xf1`\xa2\xc1^;\x1d\xdf\xbf\x92\x894\x847\xe9\x16\x15\xad\xd1c\xf9.\xc21\x02\x85\xb1\x0b\x96=\xf3D\xdf\xf7\xbep\x9c"

# 4
b'$\x82\xc8\x95\xcb\xdaq\xc0\x16\x0e\xef\xb6\xc8\x89\xabKQafM\x10^\x11\xea2\xfc\x8b\x0b~H\xfd\xe5\xe0\x80\x81<\xae\xb7\xfeT)K\xb3\x96\xc0y\x83e\x93\xae\xdb\x93\x82\xea\xb7\xb7\xdbQJX\xb2\xfdM\xf2(A6+e\xb7\x89\x8a\xba6\xb7\xa3\xde*\xea\xe0\x1cR\xa9i\x8a\x9aEK\xa2T\xebM\xa9\x1d\x96\x87\xaf\xb2I\xcej!"\xe2\xc8\xc08\x94\x8a\x18\x1d\t\x11`\xdf*\xbc\xb9\xf6J\xbci\xb3\xcc\xde\xb0\xa5\x98b}o\x94\xbe\xe0\x7f\xe2J\x8a\xa2)R{U\xdfu\xf6UO\xc2C\xf3\'\x87c\x1e\xc6\xe0\xbe\x879\xa5N\xb3J\xc8Cz\x9b\xa7\xec\x90[\xa8\x8a\xac\xeep\\ar\xbd\x94O\xce]\x1fw\x1bm|K\xce\x15\xf6\xcc\xc5\xc84\x9a\x00Z\x0b\xfd\xe9\xfb^6\x9b\xfd\xeb\x8c\xf1h\xda\x17\xc4\xb0\x08\\-\n7\x9e\x1f\x1d\xa7\xb4\xb9\xf0wq\x9a\x15G\xc5\x90\xf5\x00\x89\tI\x16\x90\xbcI\x80z\x90\xdb\nO\xdc\xe5\x8fh\xca'

Solution

  • Any asymmetric encryption method has to be randomized, so that if you encrypt the same plaintext twice, you don't get the same ciphertext. Otherwise it would be very insecure. Anyone who has the public key can encrypt something. Suppose an adversary has a ciphertext, they want to find out the plaintext, and they have partial information about the plaintext (e.g. they know it's a message in a certain format, but they don't know the exact content). They can try encrypting possible values of the plaintext until the result is the ciphertext they want to break. But since the encryption is randomized, they need to use the same data input and the same random value, otherwise they won't get the same ciphertext. And the adversary can't know what random value went into the ciphertext they want to break.

    For RSA, in practice, there are two methods for doing encryption. Both are defined by the document known as PKCS#1. Both take the plaintext to encrypt and apply a transformation to it that involves either appending random data (PKCS#1 v1.5) or masking with random data (PSS). Then the result undergoes the well-known exponentiation part of RSA.

    You can use the exponentiation to inspect a ciphertext.

    n = 21968272887747488664299300886573437453854580842272801065486318320328573181104433915148345103361664593733184722692105149694142557011266255075972021704711966860643495011049367729520386363274015109405027569939049707059547205662044677513224725454246882263137472476944688288600202939249708651097639414591301098996178101611307541565108035735952182518865647460401330824147744542993709272159435504287548711774248609991298003738752699597664282754244110245104529559246443251024491287411685325071990133422302961361831613169335261576570530061643400976849033234171349450189113706076777344091951159628029458250885131329209309850429
    e = 65537
    d = 7180742814003184493745817226790609535628314246962295259545720906634095162818242875479619891118201610188935763454388765380592975819694916096822751254380575157372246976924478622789961650274744826184819271605876418277150620865958482714928972468695190683750109638846897363602141498155351308783613387153774908482554823734710213533339079775940427840254792667407339506634483414544868884993644469123554250547973774825288728499603644573043340903253662627022861078040710813466717381393318974263956822836617559198769733538785368579523554468493535497334351910973554355558084517450711717078208243534059900951053098416621979162953
    c1 = b'\x17T\xc0\x03\xa4\xa6\xc06\x83\xdcM\xe5\xf9\xd8t\xc9>\xad}\xc9\x15[\xcc!\x19\x97/\xbf\xc7\xe4\xcbhu\x8d\xfb&\x18\x84\xc8e\xec\xe1\n\xfd$\x92\xda\x12S\x0f\r\xba\x81y\x88E\x9ceu\xd9\xd2Z\xf8\xc3\xd3&\xf2\xf7j\t\t\xf2\xc6w\xf6\x9a7\xbd\x01\x96\xad\xf5\x9e\xf4\xa8,\xd2\x19b\x0f\x05\x0c\xd8G\xe66\x91\x85.\xbdX\x0b\xd9H\xb14\xc6\x88\xb5\xd7\x1f\xed\xf7\xb4\x10\xb7\xad\x9f\xab\x01\r(\r*\xd90\x84\xba\xfb\xd9\x94HK\xdf\xaf\xa0\xf2\x98\x96\xb6*b\xb5\xc0\xa6\xe5A[\x9fwf\x18\x08v\x85\t\xb7\xf7\x97\xc74\xe5{;9qw\xb1u>\t`\xfd\x10\xfbu\xfb\xf5\x11\xe9\xc1\xa0I\x96\x03\xa5\x84\x0b\xcd\x060\xa1\xb1\xbcs|\xfe\xf3N\xad\xddA\xe2l\xf83N\xae\x9c\xbe\x1568\xe9\xf5\xfdn\xe9\xbc\x98\xb5\xb9Bn\xf1]!\x86\xd39\xd2<&\xd6}\x9a\xe2\xa4|\xf0\x9a\xaf\xac\x08^\x93\x174\n~L<+=\x8d\x95'
    print(binascii.unhexlify('0' + hex(pow(int(binascii.hexlify(c1), 16), d, n))[2:]))
    

    That last value is the padded plaintext. You can see the data in there, with padding before it. This is the PKCS#1 v1.5 padding method (which is insecure unless used very carefully, and should not be used except for backward compatibility with systems that require it).