I am trying to create a function that conditionally uses an argument, which when used, is a column of a df.
Here is an example function:
new_fx <- function(data, x, y, z=NULL){
x <- ensym(x)
y <- ensym(y)
if ( !is.null(z)){
z <- ensym(z)
}
print(head(data[[x]]))
print(head(data[[y]]))
if (!is.null(z)){
print(z)
}
}
When z
is left NULL
, I would like the function to ignore z
. However, when any column is passed as z
, I would like it to be converted to a symbol by z<- ensym(z)
.
This is what happens when I try to use the function above:
new_fx(data=iris, x=Species, y=Petal.Width)
# [1] setosa setosa setosa setosa setosa setosa
# Levels: setosa versicolor virginica
# [1] 0.2 0.2 0.2 0.2 0.2 0.4
Everything looks good when z
is left NULL
.
But when any other argument is passed:
new_fx(data=iris, x=Species, y=Petal.Width, z=Petal.Length)
# Error in new_fx(data = iris, x = Species, y = Petal.Width, z = Petal.Length) :
# object 'Petal.Length' not found
For some reason, the function has issues when the ensym()
call is used inside a conditional statement.
Any suggestions?
when you check is.null()
, you're evaluating the argument. Use missing()
instead
library(rlang)
new_fx <- function(data, x, y, z){
x <- ensym(x)
y <- ensym(y)
if ( !missing(z)){
z <- ensym(z)
}
print(head(data[[x]]))
print(head(data[[y]]))
if (!missing(z)){
print(z)
}
}
data(iris)
new_fx(data=iris, x=Species, y=Petal.Width)
#> [1] setosa setosa setosa setosa setosa setosa
#> Levels: setosa versicolor virginica
#> [1] 0.2 0.2 0.2 0.2 0.2 0.4
new_fx(data=iris, x=Species, y=Petal.Width, z=Petal.Length)
#> [1] setosa setosa setosa setosa setosa setosa
#> Levels: setosa versicolor virginica
#> [1] 0.2 0.2 0.2 0.2 0.2 0.4
#> Petal.Length