I have a little bit code which I'll have to vectorizate it to make it faster. I'm not very attached into python and thinking that the for loop is not so efficient.
Is there any way to reduce the time?
import numpy as np
import time
start = time.time()
N = 10000000 #9 seconds
#N = 100000000 #93 seconds
alpha = np.linspace(0.00000000000001, np.pi/2, N)
tmp = 2.47*np.sin(alpha)
for i in range(N):
if (abs(tmp[i])>1.0):
tmp[i]=1.0*np.sign(tmp[i])
beta = np.arcsin(tmp)
end = time.time()
print("Executed time: ",round(end-start,1),"Seconds")
I read about some numpy functions but I don't have a solution for this.
Clip the array:
tmp = np.clip(2.47 * np.sin(alpha), -1.0, 1.0)