I am working on something where I have a SQL code in place already. Now we are migrating to Azure. So I created an Azure databricks for the piece of transformation and used the same SQL code with some minor changes.
I want to know - Is there any recommended way or best practice to work with Azure databricks ? Should we re-write the code in PySpark for the better performance?
Note : End results from the previous SQL code has no bugs. Its just that we are migrating to Azure. Instead of spending time over re-writing the code, I made use of same SQL code. Now I am looking for suggestions to understand the best practices and how it will make a difference.
Looking for your help. Thanks !
Expecting - Along with the migration from on prem to Azure. I am looking for some best practices for better performance.
After getting help on the posted question and doing some research I came up with below response --
Use Python - For heavy transformation (more complex data processing) or for analytical / machine learning purpose Use SQL - When we are dealing with relational data source (focused on querying and manipulating structured data stored in a relational database)
Note: There may be some optimization techniques in both the languages which we can use to make the performance better.
Summary : Choose language based on the use cases. Both has the distributed processing because its running on Spark cluster.
Thank you !