Consider numpy array arr
, shown below:
arr = ([[1, 5, 6, 3, 3, 7],
[2, 2, 2, 2, 2, 2],
[0, 1, 0, 1, 0, 1],
[4, 8, 4, 8, 4, 8],
[1, 2, 3, 4, 5, 6]])
I want to find all row permutations of arr
. NOTE: the order of elements in any given row is unchanged. It is the entire rows that are being permuted.
Because arr
has 5 rows, there will be 5! = 120 permutations. I’m hoping these could be ‘stacked’ into a 3d array p
, having shape (120, 5, 6):
p = [[[1, 5, 6, 3, 3, 7],
[2, 2, 2, 2, 2, 2],
[0, 1, 0, 1, 0, 1],
[4, 8, 4, 8, 4, 8],
[1, 2, 3, 4, 5, 6]],
[[1, 5, 6, 3, 3, 7],
[2, 2, 2, 2, 2, 2],
[0, 1, 0, 1, 0, 1],
[1, 2, 3, 4, 5, 6]
[4, 8, 4, 8, 4, 8]],
… etc …
[[1, 2, 3, 4, 5, 6],
[4, 8, 4, 8, 4, 8],
[0, 1, 0, 1, 0, 1],
[2, 2, 2, 2, 2, 2],
[1, 5, 6, 3, 3, 7]]]
There is a lot of material online about permitting elements within rows, but I need help in permuting the entire rows themselves.
You can make use of itertools.permutations
and np.argsort
:
from itertools import permutations
out = np.array([arr[np.argsort(idx)] for idx in permutations(range(5))])
print(out)
[[[1 5 6 3 3 7]
[2 2 2 2 2 2]
[0 1 0 1 0 1]
[4 8 4 8 4 8]
[1 2 3 4 5 6]]
[[1 5 6 3 3 7]
[2 2 2 2 2 2]
[0 1 0 1 0 1]
[1 2 3 4 5 6]
[4 8 4 8 4 8]]
[[1 5 6 3 3 7]
[2 2 2 2 2 2]
[4 8 4 8 4 8]
[0 1 0 1 0 1]
[1 2 3 4 5 6]]
...
[[1 2 3 4 5 6]
[0 1 0 1 0 1]
[4 8 4 8 4 8]
[2 2 2 2 2 2]
[1 5 6 3 3 7]]
[[4 8 4 8 4 8]
[1 2 3 4 5 6]
[0 1 0 1 0 1]
[2 2 2 2 2 2]
[1 5 6 3 3 7]]
[[1 2 3 4 5 6]
[4 8 4 8 4 8]
[0 1 0 1 0 1]
[2 2 2 2 2 2]
[1 5 6 3 3 7]]]