Search code examples
pythonarraystensorflowkerasconv-neural-network

Can't broadcast input array from one shape to another shape when displaying CNN Filter layers


I am trying to display my CNN filter images however I get a input shape error and I am unsure how to fix it. My code is the following:

# Let's define a new Model that will take an image as input, and will output
# intermediate representations for all layers in the previous model after
# the first.
successive_outputs = [layer.output for layer in model.layers[1:]]

visualization_model = tf.keras.models.Model(inputs = model.input, outputs = successive_outputs)

img = load_img(img_path, target_size=(360, 640))  # this is a PIL image

x   = img_to_array(img)                           # Numpy array with shape (150, 150, 3)
x   = x.reshape((1,) + x.shape)                   # Numpy array with shape (1, 150, 150, 3)

# Rescale by 1/255
x /= 255.0

# Let's run our image through our network, thus obtaining all
# intermediate representations for this image.
successive_feature_maps = visualization_model.predict(x)

# These are the names of the layers, so can have them as part of our plot
layer_names = [layer.name for layer in model.layers]

# -----------------------------------------------------------------------
# Now let's display our representations
# -----------------------------------------------------------------------
for layer_name, feature_map in zip(layer_names, successive_feature_maps):
  print(feature_map.shape)

  if len(feature_map.shape) == 4:
    
    #-------------------------------------------
    # Just do this for the conv / maxpool layers, not the fully-connected layers
    #-------------------------------------------
    n_features = feature_map.shape[-1]  # number of features in the feature map
    size       = feature_map.shape[ 1]  # feature map shape (1, size, size, n_features)
    
    # We will tile our images in this matrix
    display_grid = np.zeros((size, size * n_features))
    print(display_grid.shape)
    
    #-------------------------------------------------
    # Postprocess the feature to be visually palatable
    #-------------------------------------------------
    for i in range(n_features):
      x  = feature_map[0, :, :, i]
      x -= x.mean()
      x /= x.std ()
      x *=  64
      x += 128
      x  = np.clip(x, 0, 255).astype('uint8')
      display_grid[:, i * size : (i + 1) * size] = x # Tile each filter into a horizontal grid


    #-----------------
    # Display the grid
    #-----------------

    scale = 20. / n_features
    plt.figure( figsize=(scale * n_features, scale) )
    plt.title ( layer_name )
    plt.grid  ( False )
    plt.imshow( display_grid, aspect='auto', cmap='viridis' ) 

The layers within my model and it's shapes:

Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 360, 640, 3)]     0         
                                                                 
 block1_conv1 (Conv2D)       (None, 360, 640, 64)      1792      
                                                                 
 block1_conv2 (Conv2D)       (None, 360, 640, 64)      36928     
                                                                 
 block1_pool (MaxPooling2D)  (None, 180, 320, 64)      0         
                                                                 
 block2_conv1 (Conv2D)       (None, 180, 320, 128)     73856     
                                                                 
 block2_conv2 (Conv2D)       (None, 180, 320, 128)     147584    
                                                                 
 block2_pool (MaxPooling2D)  (None, 90, 160, 128)      0         
                                                                 
 block3_conv1 (Conv2D)       (None, 90, 160, 256)      295168    
                                                                 
 block3_conv2 (Conv2D)       (None, 90, 160, 256)      590080    
                                                                 
 block3_conv3 (Conv2D)       (None, 90, 160, 256)      590080    
                                                                 
 block3_pool (MaxPooling2D)  (None, 45, 80, 256)       0         
                                                                 
 block4_conv1 (Conv2D)       (None, 45, 80, 512)       1180160   
                                                                 
 block4_conv2 (Conv2D)       (None, 45, 80, 512)       2359808   
                                                                 
 block4_conv3 (Conv2D)       (None, 45, 80, 512)       2359808   
                                                                 
 block4_pool (MaxPooling2D)  (None, 22, 40, 512)       0         
                                                                 
 block5_conv1 (Conv2D)       (None, 22, 40, 512)       2359808   
                                                                 
 block5_conv2 (Conv2D)       (None, 22, 40, 512)       2359808   
                                                                 
 block5_conv3 (Conv2D)       (None, 22, 40, 512)       2359808   
                                                                 
 block5_pool (MaxPooling2D)  (None, 11, 20, 512)       0         
                                                                 
 flatten (Flatten)           (None, 112640)            0         
                                                                 
 dense (Dense)               (None, 4096)              461377536 
                                                                 
 batch_normalization (BatchN  (None, 4096)             16384     
 ormalization)                                                   
                                                                 
 dropout (Dropout)           (None, 4096)              0         
                                                                 
 dense_1 (Dense)             (None, 4096)              16781312  
                                                                 
 batch_normalization_1 (Batc  (None, 4096)             16384     
 hNormalization)                                                 
                                                                 
 dropout_1 (Dropout)         (None, 4096)              0         
                                                                 
 dense_2 (Dense)             (None, 3)                 12291     
                                                                 
=================================================================
Total params: 492,918,595
Trainable params: 480,547,331
Non-trainable params: 12,371,264
_________________________________________________________________

After running the code, this is the error that I am getting:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
Cell In[44], line 53
     51   x += 128
     52   x  = np.clip(x, 0, 255).astype('uint8')
---> 53   display_grid[:, i * size : (i + 1) * size] = x # Tile each filter into a horizontal grid
     56 #-----------------
     57 # Display the grid
     58 #-----------------
     60 scale = 20. / n_features

ValueError: could not broadcast input array from shape (360,640) into shape (360,360)

Wouldn't the shape be altered to fit into the appropriate shape? Is there some sort of transformation that I am missing? I have also tried using the preprocess_input function however the same error occurs


Solution

  • Your feature maps are not square. So # feature map shape (1, size, size, n_features) is not true. i suggest you to try this changes.

    size1 , size2= feature_map.shape[1],feature_map.shape[2]
    display_grid = np.zeros((size1, size2 * n_features))
    

    and

    display_grid[:, i * size2 : (i + 1) * size2] = x