I have a dataframe with these values in column A:
df = pd.DataFrame(A,columns =['A'])
A
0 0
1 5
2 1
3 7
4 0
5 2
6 1
7 3
8 0
I need to create a new column (called B) and populate it using next conditions:
Condition 1: If the value of A is equal to 0 then, the value of B must be 0.
Condition 2: If the value of A is not 0 then I compare its value to the previous value of B. If A is higher than the previous value of B then I take A, otherwise I take B. The result should be this:
A B
0 0 0
1 5 5
2 1 5
3 7 7
4 0 0
5 2 2
6 1 2
7 3 3
The dataset is huge and using loops would be too slow. I would need to solve this without using loops and the pandas “Loc” function. Anyone could help me to solve this using the Apply function? I have tried different things without success.
Thanks a lot.
One way to do this I guess could be the following
def do_your_stuff(row):
global value
# fancy stuff here
value = row["b"]
[...]
value = df.iloc[0]['B']
df["C"] = df.apply(lambda row: do_your_stuff(row), axis=1)