I am trying to fit a model that linearly relates two variables using R. I need to fit a Orthogonal Linear Regression (total least squares). So I'm trying to use the odregress()
function of the pracma package which performs an Orthogonal Linear Regression via PCA.
Here an example data:
x <- c(1.0, 0.6, 1.2, 1.4, 0.2, 0.7, 1.0, 1.1, 0.8, 0.5, 0.6, 0.8, 1.1, 1.3, 0.9)
y <- c(0.5, 0.3, 0.7, 1.0, 0.2, 0.7, 0.7, 0.9, 1.2, 1.1, 0.8, 0.7, 0.6, 0.5, 0.8)
I'm able to fit the model and get the coefficient using:
odr <- odregress(y, x)
c <- odr$coeff
So, the model is defined by the following equation:
print(c)
[1] 0.65145762 -0.03328271
Y = 0.65145762*X - 0.03328271
Now I need to plot the line fit, compute the RMSE and the R-squared. How can I do that?
plot(x, y)
Here are two functions to compute the MSE and RMSE.
library(pracma)
x <- c(1.0, 0.6, 1.2, 1.4, 0.2, 0.7, 1.0, 1.1, 0.8, 0.5, 0.6, 0.8, 1.1, 1.3, 0.9)
y <- c(0.5, 0.3, 0.7, 1.0, 0.2, 0.7, 0.7, 0.9, 1.2, 1.1, 0.8, 0.7, 0.6, 0.5, 0.8)
odr <- odregress(y, x)
mse_odreg <- function(object) mean(object$resid^2)
rmse_odreg <- function(object) sqrt(mse_odreg(object))
rmse_odreg(odr)
#> [1] 0.5307982
Created on 2023-01-10 with reprex v2.0.2
The R^2 can be computed with the following function. Note that odr$ssq
is not the sum of the squared residuals, odr$resid
, it is the sum of the squared errors, odr$err
.
r_squared_odreg <- function(object, y) {
denom <- sum((y - mean(y))^2)
1 - object$ssq/denom
}
r_squared_odreg(odr, y)
#> [1] 0.1494818
Created on 2023-01-10 with reprex v2.0.2