I have been searching if there is an standard mehtod to create a subarray using relative indexes. Take the following array into consideration:
>>> m = np.arange(25).reshape([5, 5])
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
I want to access the 3x3 matrix at a specific array position, for example [2,2]:
>>> x = 2, y = 2
>>> m[slice(x-1,x+2), slice(y-1,y+2)]
array([[ 6, 7, 8],
[11, 12, 13],
[16, 17, 18]])
For example for the above somethig like m.subarray(pos=[2,2], shape=[3,3])
I want to sample a ndarray of n dimensions on a specific position which might change.
I did not want to use a loop as it might be inneficient. Scipy
functions correlate
and convolve
do this very efficiently, but for all positions. I am interested only in the sampling of one.
The best answer could solve the issues at edges, in my case I would like for example to have wrap
mode:
(a b c d | a b c d | a b c d)
--------------------EDITED-----------------------------
Based on the answer from @Carlos Horn, I could create the following function.
def cell_neighbours(array, index, shape):
pads = [(floor(dim/2), ceil(dim / 2)) for dim in shape]
array = np.pad(self.configuration, pads, "wrap")
views = np.lib.stride_tricks.sliding_window_view
return views(array, shape)[tuple(index)]
Last concern might be about speed, from docs: For many applications using a sliding window view can be convenient, but potentially very slow. Often specialized solutions exist
.
From here maybe is easier to get a faster solution.
You could build a view of 3x3 matrices into the array as follows:
import numpy as np
m = np.arange(25).reshape(5,5)
m3x3view = np.lib.stride_tricks.sliding_window_view(m, (3,3))
Note that it will change slightly your indexing on half the window size meaning
x_view = x - 3//2
y_view = y - 3//2
print(m3x3view[x_view,y_view]) # gives your result
In case a copy operation is fine, you could use:
mpad = np.pad(m, 1, mode="wrap")
mpad3x3view = np.lib.stride_tricks.sliding_window_view(mpad, (3,3))
print(mpad3x3view[x % 5,y % 5])
to use arbitrary x, y
integer values.