Search code examples
pythonpandasdataframedrop-duplicates

Using `drop_duplicates` on a Pandas dataframe isn't dropping rows


Situation

I have dataframe similar to below ( although I've removed many of the rows for this example, as evidenced in the 'index' column):

df

index id name last_updated
0 1518 Maker 2022-12-31T03:02:00.000Z
1 1518 Maker 2022-12-31T02:02:00.000Z
2 1518 Maker 2022-12-31T14:02:00.000Z
3 1518 Maker 2022-12-31T16:02:00.000Z
23 1518 Maker 2022-12-31T17:02:00.000Z
24 2280 Filecoin 2022-12-31T01:02:00.000Z
25 2280 Filecoin 2022-12-31T03:01:00.000Z
26 2280 Filecoin 2022-12-31T02:01:00.000Z
27 2280 Filecoin 2022-12-31T00:02:00.000Z
47 2280 Filecoin 2022-12-31T08:02:00.000Z
48 4558 Flow 2022-12-31T01:02:00.000Z
49 4558 Flow 2022-12-31T02:01:00.000Z
71 4558 Flow 2022-12-31T05:02:00.000Z
72 5026 Orchid 2022-12-31T01:02:00.000Z
73 5026 Orchid 2022-12-31T03:02:00.000Z
74 5026 Orchid 2022-12-31T02:01:00.000Z
75 5026 Orchid 2022-12-31T00:02:00.000Z

I want a version of the above dataframe but with only 1 row for each id parameter. Keeping the last instance.

This is my code:

df.drop_duplicates(subset=['id'], keep='last')

Expectation

That the new df would retain only 4 rows, the 'last' instance for each 'id' value in dataframe df.

Result

After running the drop_duplicates command, the df returns the exact same dataframe. Same shape as prior to my drop_duplicates attempt.

I've been trying to use this post to sort it out, but obvs there's something I'm not getting right:

pandas select rows with no duplicate

I'd appreciate any input on why the last instance of rows with duplicate 'id' values are not being dropped.


Solution

  • You should add df.drop_duplicates(subset=['id'], keep='last', inplace=True). If you don't do this, only a copy is returned. By specifying inplace=True, the dataframe is modified.

    See documentation: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.drop_duplicates.html

    Hope this helps!