res = 0
for i in range (1,n):
j = i
while j % 2 == 0:
j = j/2
res = res + j
I understand that upper bound is O(nlogn), however I'm wondering if it's possible to find a stronger constraint? I'm stuck with the analysis.
Some ideas that may be helpful:
g(n)
) that annotates your function (f(n)
) to include how many operations occur when running f(n)def f(n):
res = 0
for i in range (1,n):
j = i
while j % 2 == 0:
j = j/2
res = res + j
return res
def g(n):
comparisons = 0
operations = 0
assignments = 0
assignments += 1
res = 0
assignments += 1. # i = 1
comparisons += 1. # i < n
for i in range (1,n):
assignments += 1
j = i
operations += 1
comparisons += 1
while j % 2 == 0:
operations += 1
assignments += 1
j = j/2
operations += 1
assignments += 1
res = res + j
operations += 1
comparisons += 1
operations += 1 # i + 1
assignments += 1 # assign to i
comparisons += 1 # i < n ?
return operations + comparisons + assignments
res
; assigning i
as 1; comparing i
to n
and skipping the loop as a result.Once in the loop:
i
is odd, then you only assign j
, perform the mod operation and compare to zero. That will be the case for half the values of i
, so each run of the loop from 2 to n will (half the time) add a fixed number of a few operations (including the loop operations). So, that's still O(n), just with a larger constant.i
is even, then we divide by 2 until it is odd. This is what we need to work out the impact of.Based on my counting of the different operations, I get:
For a random even i
between 2 and n, half the time we will only need to divide by two once, half the remaining time by two again, half the remaining time by two again, etc. So we have an infinite series as n goes to infinity of sum(1/2^i) for 1 < i < n, and multiply that by the 6 operations done for each halving of j.
I would expect from this:
g(n) = 3 + (n * 6) + (n * 6) * sum( 1 / pow(2,m) for m between 1 and n )
Given that the infinite series 1/2^n = 1, we simplify that to:
g(n) = 3 + 12n as n approaches infinity.
That implies that the algorithm is O(n). Huh. I did not expect that.
Let's try out the function g(n) from above, counting all the operations that are occurring as f(n) is computed.
g(1) = 3 operations
g(2) = 9
g(3) = 21
g(4) = 27
g(5) = 45
g(10) = 123
g(100) = 1167
g(1000) = 11943
g(10000) = 119943
g(100000) = 1199931
g(1000000) = 11999919
g(10000000) = 119999907
Okay, unless I've really made a serious error here, it's O(n).