I try to substitute variables in a sympy expression but I get NaN type after substitution and I don't understand why.
Here is the code:
import sympy as sp
import copy
import numpy as np
import itertools as it
import matplotlib.pyplot as plt
alpha_set_values = np.linspace(0, 5, 10000)
beta_set_values = np.linspace(0, 6, 10000)
def plot_expr(exprVal, points):
for point in points:
value = exprVal.subs( [ (beta,point[0]), (alpha, point[1]) ] )
print(type(value))
if value > 0:
plt.scatter([beta], [alpha], color = 'r')
else:
plt.scatter([beta], [alpha], color = 'b')
plt.show()
plot_expr(expr1, points)
expr1 is a sympy expression with symbols alpha and beta (α*(1 - 0.1/β) + α - 0.3α/β + 2 - 1.9(αβ - 0.1α - β)/β). After substitution, datatype of value is NaN
For the full code here is google colab link. The last 2 cells are important and must be run - the error lacks in the last cell
You are getting Nan because your first point is (0, 0)
. Take a look at your expression, expr1
:
α*(1 - 0.1/β) + α - 0.3*α/β + 2 - 1.9*(α*β - 0.1*α - β)/β
In particular, the terms:
α*(1 - 0.1/β)
: after the substitution, sympy evaluates 0 * (1 - zoo)
which results in Nan
.α/β
might results in NaN
.I see what you are trying to do: the best way to achieve your goal is to use plot_implicit
:
sp.plot_implicit(expr1 > 0, (beta, 0, 6), (alpha, 0, 5))
Alternatively, if you'd like to go on with your approach, consider starting from a slightly different value than zero. Also, to speed up computation and plotting, use sp.lambdify
to convert the symbolic expression to a numerical function:
n = 100
alpha_set_values = np.linspace(1e-06, 5, n)
beta_set_values = np.linspace(1e-06, 6, n)
alpha_set_values, beta_set_values = np.meshgrid(alpha_set_values, beta_set_values)
f = sp.lambdify([alpha, beta], expr1)
res = f(alpha_set_values, beta_set_values)
alpha_set_values = alpha_set_values.flatten()
beta_set_values = beta_set_values.flatten()
res = res.flatten()
idx = res > 0
plt.figure()
plt.scatter(beta_set_values[idx], alpha_set_values[idx], color="r")
plt.scatter(beta_set_values[~idx], alpha_set_values[~idx], color="b")
plt.show()