Search code examples
pythonopencvcomputer-visiontransformationhomography

Aligning two images with manual homography


I'm creating an application that uses manual calibration to align two images. I'm trying to align them almost pixel perfectly, so I'm not relying on automatic calibration as it did not work the best for this scenario. I'm doing it manually by choosing pixels. However, the result is not what I hoped for, and I do not know where I'm making a mistake. I feel like the computed points should place the image precisely on top of the other one, but for some reason, it does not. What am I doing wrong?

Results of homography:

[[ 7.43200521e-01 -1.79170744e-02 -1.76782990e+02]
 [ 1.00046389e-02  7.84106136e-01 -3.22549155e+01]
 [ 5.10695284e-05 -8.48641135e-05  1.00000000e+00]]

Manually picked points: RGB:

[[ 277  708]
 [1108  654]
 [ 632  545]
 [ 922  439]
 [ 874  403]
 [ 398  376]
 [ 409  645]
 [ 445  593]
 [ 693  342]
 [ 739  244]
 [ 505  234]
 [ 408  275]
 [ 915  162]
 [1094  126]
 [ 483  115]
 [ 951  366]
 [ 517  355]]

Thermal:

[[  8 549]
 [634 491]
 [282 397]
 [496 318]
 [461 289]
 [113 269]
 [122 479]
 [148 438]
 [325 236]
 [360 162]
 [194 156]
 [121 188]
 [484 106]
 [621  67]
 [178  62]
 [515 261]
 [203 253]]
    def manual_calibration(self, rgb: cv2.UMat, thermal: cv2.UMat) -> Tuple[cv2.UMat, Tuple[int, int, int, int]]:
               
        rgb_gray = cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY) 
        thermal_gray = cv2.cvtColor(thermal, cv2.COLOR_BGR2GRAY) 
        
        h_rgb, w_rgb = rgb_gray.shape
        h_th, w_th = thermal_gray.shape
        
        thermal_gray = cv2.copyMakeBorder(thermal_gray, 0, h_rgb - h_th, 0, 0, cv2.BORDER_CONSTANT, value=[0, 0, 0])
        
        merged = cv2.hconcat((rgb_gray, thermal_gray))
        
        self.merged = cv2.cvtColor(merged, cv2.COLOR_GRAY2RGB)
        
        def point_validation(ix, iy):
            if ix > w_rgb:
                ix -= w_rgb
            return ix, iy

        self.points_left = np.array([])
        self.points_right = np.array([])
        self.label = True

        def select_point(event, x, y, flags, param):
            if event == cv2.EVENT_LBUTTONDOWN: # captures left button double-click
                ix, iy = x, y
                cv2.circle(img=self.merged, center=(x,y), radius=5, color=(0,255,0),thickness=-1)
                
                ix, iy = point_validation(ix, iy)
                
                pt = np.array([ix, iy])
                
                if self.label:
                    # self.points_left = np.vstack((self.points_left, pt))
                    self.points_left = np.vstack((self.points_left, pt)) if self.points_left.size else pt
                    self.label = False
                else:
                    # self.points_right = np.vstack((self.points_right, pt))
                    self.points_right = np.vstack((self.points_right, pt)) if self.points_right.size else pt
                    self.label = True
                    
                    
                print(ix, iy)
            
    
        cv2.namedWindow('calibration')
        cv2.setMouseCallback('calibration', select_point)
        
        while True:
            cv2.imshow("calibration", self.merged)
            if cv2.waitKey(20) & 0xFF == 27:
                break
        cv2.destroyAllWindows()
        
        print(self.points_left)
        print(self.points_right)
        
        ### EDIT NEW POINT VALIDATION
        rgb_gray_check = rgb_gray
        thermal_gray_check = thermal_gray
        
        for point in self.points_left:
            cv2.circle(img=rgb_gray_check, center=point, radius=5, color=(0,255,0),thickness=-1)
            
        for point in self.points_right:
            cv2.circle(img=thermal_gray_check, center=point, radius=5, color=(0,255,0),thickness=-1)
        
        cv2.imshow('rgb', rgb_gray_check)
        cv2.imshow('thermal', thermal_gray_check)
        cv2.waitKey(0)
       
        ### EDIT NEW POINT VALIDATION


        
        
        # Compute homography

        # 0 - a regular method using all the points
        # CV_RANSAC - RANSAC-based robust method
        # CV_LMEDS - Least-Median robust method
        matrix, mask = cv2.findHomography(self.points_left, self.points_right, 0)
        
        print(matrix)
                   
        # matrix[0][3] += (w_th/2)
        # matrix[1][3] += (h_th/2)
        
        warp_src = cv2.warpPerspective(thermal, matrix, (rgb.shape[1], rgb.shape[0]))
                
        alpha = 0.5
        beta = (1.0 - alpha)
        dst_warp_blended = cv2.addWeighted(rgb, alpha, warp_src, beta, 0.0)
        
        cv2.imshow('Blended destination and warped image', dst_warp_blended)
        cv2.waitKey(0)

Source images: rgb thermal

My result: result


Solution

  • So I figured it out!

    I accidentally flipped parameters in the findHomography function. So it should be

    matrix, mask = cv2.findHomography(self.points_right, self.points_left, 0)

    And, of course, delete the offset for the homography matrix.