Unlike standart data, I have dataset contain separetly as train, test1 and test2. I implemented ML algorithms and got performance metrics. But when i apply cross validation, it's getting complicated.. May be someone help me.. Thank you..
It's my code..
train = pd.read_csv('train-alldata.csv',sep=";")
test = pd.read_csv('test1-alldata.csv',sep=";")
test2 = pd.read_csv('test2-alldata.csv',sep=";")
X_train = train_pca_son.drop('churn_yn',axis=1)
y_train = train_pca_son['churn_yn']
X_test = test_pca_son.drop('churn_yn',axis=1)
y_test = test_pca_son['churn_yn']
X_test_2 = test2_pca_son.drop('churn_yn',axis=1)
y_test_2 = test2_pca_son['churn_yn']
For example, KNN Classifier.
knn_classifier = KNeighborsClassifier(n_neighbors =7,metric='euclidean')
knn_classifier.fit(X_train, y_train)
For K-Fold.
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import KFold, cross_val_score
dtc = DecisionTreeClassifier(random_state=42)
k_folds = KFold(n_splits = 5)
scores = cross_val_score(dtc, X, y, cv = k_folds)
print("Cross Validation Scores: ", scores)
print("Average CV Score: ", scores.mean())
print("Number of CV Scores used in Average: ", len(scores))
This is a variation on the "holdout test data" pattern (see also: Wikipedia: Training, Validation, Test / Confusion in terminology). For churn prediction: this may arise if you have two types of customers, or are evaluating on two time frames.
X_train, y_train ← perform training and hyperparameter tuning with this
X_test1, y_test1 ← test on this
X_test2, y_test2 ← test on this as well
Cross validation estimates holdout error using the training data—it may come up if you estimate hyperparameters with GridSearchCV
. Final evaluation involves estimating performance on two test sets, separately or averaged over the two:
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import f1_score
X, y = make_classification(n_samples=1000, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
X_test1, X_test2, y_test1, y_test2 = train_test_split(X_test, y_test, test_size=.5)
print(y_train.shape, y_test1.shape, y_test2.shape)
# (600,) (200,) (200,)
clf = KNeighborsClassifier(n_neighbors=7).fit(X_train, y_train)
print(f1_score(y_test1, clf.predict(X_test1)))
print(f1_score(y_test2, clf.predict(X_test2)))
# 0.819
# 0.805