I am working on a system which produces and consumes large numbers of "events", they are a name with some small payload of data, and an attached function which is used as a kind of fold-left over the data, something like a reducer.
I receive from the upstream something like {t: 'fieldUpdated', p: {new: 'new field value'}}
, and must in my program associate the fieldUpdated
"callback" function with the incoming event and apply it. There is a confirmation command I must echo back (which follows a programatic naming convention), and each type is custome.
I tried using simple macros to do codegen for the structs, callbacks, and with the paste::paste!
macro crate, and with the stringify
macro I made quite good progress.
Regrettably however I did not find a good way to metaprogram these into a list or map using macros. Extending an enum through macros doesn't seem to be possible, and solutions such as the use of ctors
seems extremely hacky.
My ideal case is something this:
type evPayload = {
new: String
}
let evHandler = fn(evPayload: )-> Result<(), Error> { Ok(()) }
// ...
let data = r#"{"t": 'fieldUpdated', "p": {"new": 'new field value'}}"#'
let v: Value = serde_json::from_str(data)?;
Given only knowledge of data
how can use macros, specifically (boilerplate is actually 2-3 types, 3 functions, some factory and helper functions) in a way that I can do a name-to-function lookup?
It seems like Serde's adjacently, or internally tagged would get me there, if I could modify a enum in a macro https://serde.rs/enum-representations.html#internally-tagged
It almost feels like I need a macro which can either maintain an enum, or I can "cheat" and use module scoped ctors
to do a quasi-static initialization of the names and types into a map.
My program would have on the order of 40-100 of these, with anything from 3-10 in a module. I don't think ctors are necessarily a problem here, but the fact that they're a little grey area handshake, and that ctors might preclude one day being able to cross-compile to wasm put me off a little.
I actually had need of something similar today; the enum macro part specifically. But beware of my method: here be dragons!
Someone more experienced than me — and less mad — should probably vet this. Please do not assume my SAFETY comments to be correct.
Also, if you don't have variant that collide with rust keywords, you might want to tear out the '_' prefix hack entirely. I used a static mut byte array for that purpose, as manipulating strings was an order of magnitude slower, but that was benchmarked in a simplified function. There are likely better ways of doing this.
Finally, I am using it where failing to parse must cause panic, so error handling somewhat limited.
With that being said, here's my current solution:
/// NOTE: It is **imperative** that the length of this array is longer that the longest variant name +1
static mut CHECK_BUFF: [u8; 32] = [b'_'; 32];
macro_rules! str_enums {
($enum:ident: $($variant:ident),* $(,)?) => {
#[allow(non_camel_case_types)]
#[derive(Debug, Default, Hash, Clone, PartialEq, Eq, PartialOrd, Ord)]
enum $enum {
#[default]
UNINIT,
$($variant),*,
UNKNOWN
}
impl FromStr for $enum {
type Err = String;
fn from_str(s: &str) -> Result<Self, Self::Err> {
unsafe {
// SAFETY: Currently only single threaded
CHECK_BUFF[1..len].copy_from_slice(s.as_bytes());
let len = s.len() + 1;
assert!(CHECK_BUFF.len() >= len);
// SAFETY: Safe as long as CHECK_BUFF.len() >= s.len() + 1
match from_utf8_unchecked(&CHECK_BUFF[..len]) {
$(stringify!($variant) => Ok(Self::$variant),)*
_ => Err(format!(
"{} variant not accounted for: {s} ({},)",
stringify!($enum),
from_utf8_unchecked(&CHECK_BUFF[..len])
))
}
}
}
}
impl From<&$enum> for &'static str {
fn from(variant: &$enum) -> Self {
unsafe {
match variant {
// SAFETY: The first byte is always '_', and stripping it of should be safe.
$($enum::$variant => from_utf8_unchecked(&stringify!($variant).as_bytes()[1..]),)*
$enum::UNINIT => {
eprintln!("uninitialized {}!", stringify!($enum));
""
}
$enum::UNKNOWN => {
eprintln!("unknown {}!", stringify!($enum));
""
}
}
}
}
}
impl Display for $enum {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}", Into::<&str>::into(self))
}
}
};
}
And then I call it like so:
str_enums!(
AttributeKind:
_alias,
_allowduplicate,
_altlen,
_api,
...
_enum,
_type,
_struct,
);
str_enums!(
MarkupKind:
_alias,
_apientry,
_command,
_commands,
...
);