I have below implementation
library(dplyr)
library(tidyr)
dat = data.frame('A' = 1:3, 'C_1' = 1:3, 'C_2' = 1:3, 'M' = 1:3)
Below works
dat %>% rowwise %>% mutate(Anew = list({function(x) c(x[1]^2, x[2] + 5, x[3] + 1)}(c(M, C_1, C_2)))) %>% ungroup %>% unnest_wider(Anew, names_sep = "")
However below does not work when I try find the column names using dplyr::starts_with()
dat %>% rowwise %>% mutate(Anew = list({function(x) c(x[1]^2, x[2] + 5, x[3] + 1)}(c(M, starts_with('C_'))))) %>% ungroup %>% unnest_wider(Anew, names_sep = "")
Any pointer on how to correctly apply starts_with()
in this context will be very helpful.
PS : This is continuation from my earlier post Apply custom function that returns multiple values after dplyr::rowwise()
If we wrap the starts_with
in c_across
and assuming there is a third column that starts with C_
, then the lambda function on the fly would work
library(dplyr)
library(tidyr)
dat %>%
rowwise %>%
mutate(Anew = list((function(x) c(x[1]^2, x[2] + 5, x[3] +
1))(c_across(starts_with("C_"))))) %>%
unnest_wider(Anew, names_sep = "")
-output
# A tibble: 3 × 8
A C_1 C_2 C_3 M Anew1 Anew2 Anew3
<int> <int> <int> <int> <int> <dbl> <dbl> <dbl>
1 1 1 1 1 1 1 6 2
2 2 2 2 2 2 4 7 3
3 3 3 3 3 3 9 8 4
Or instead of doing rowwise
, we may create a named list
of functions and apply column wise with across
(would be more efficient)
fns <- list(C_1 = function(x) x^2, C_2 = function(x) x + 5,
C_3 = function(x) x + 1)
dat %>%
mutate(across(starts_with("C_"),
~ fns[[cur_column()]](.x), .names = "Anew{seq_along(.fn)}"))
-output
A C_1 C_2 C_3 M Anew1 Anew2 Anew3
1 1 1 1 1 1 1 6 2
2 2 2 2 2 2 4 7 3
3 3 3 3 3 3 9 8 4
dat <- data.frame('A' = 1:3, 'C_1' = 1:3, 'C_2' = 1:3, C_3 = 1:3, 'M' = 1:3)