Below you can see the reproduced sample of my data.
DATA <- structure(list(ID = c("101", "101", "101", "101", "101", "101","101", "101", "101", "101"), IDA = c("1", "1", "2", "3", "4","5", "5", "1859", "1860", "1861"), DATE = structure(c(1300928400,1277946000, 1277946000, 1278550800, 1278550800, 1453770000, 1329958800,1506474000, 1485133200, 1485133200), tzone = "UTC", class = c("POSIXct","POSIXt")), NR = c("CH-0001", "CH-0001","CH-0002", "CH-0003", "CH-0004", "CH-0005","CH-0005", "CH-1859", "CH-1860", "CH-1861"), PAT = c("101-1", "101-1", "101-2", "101-3", "101-4", "101-5","101-5", "101-1859", "101-1860", "101-1861"), INT1 = c(245005,280040, 280040, 280040, 280040, 240040, 240040, NA, NA, NA),INT2 = c(NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,NA_real_, NA_real_, NA_real_, NA_real_, NA_real_), INT3 = c(NA_real_,NA_real_, 280010, NA_real_, NA_real_, NA_real_, NA_real_,NA_real_, 245035, NA_real_), INT4 = c(NA_real_, NA_real_,NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, NA_real_,NA_real_, NA_real_), INTX1 = c(NA_real_, 275040, NA_real_,NA_real_, NA_real_, NA_real_, 240080, NA_real_, NA_real_,NA_real_), INTX2 = c(276790, NA_real_, 7612645, NA_real_,NA_real_, NA_real_, 5078219, NA_real_, NA_real_, NA_real_), INTX173 = c(NA_real_, NA_real_, NA_real_, 3456878,NA_real_, NA_real_, 3289778, NA_real_, NA_real_, NA_real_), INTX4 = c(NA_real_, NA_real_, 11198767, NA_real_,NA_real_, NA_real_, NA_real_, NA_real_, NA_real_, 7025676), KAT = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 1)), row.names = c(NA,-10L), class = c("tbl_df", "tbl", "data.frame"))
As you see, I have eight columns called: INT1:INT4 and INTX1:INTX4. For each row there are only a maximum of four values for these variables and the rest are NAs. I need to create four new variables called ING1:ING4 and tell R to check the 8 columns one by one per row and assign the first value it finds in that row to ING1, the second value to ING2, the third value to ING3, and the fourth value to ING4.At the end, it is possible that, for a row, all or some of the ING1:ING4 columns are filled with values. I would expect for row 1 I get the following ING columns:
ING1 == 245005, ING2 == 276790, ING3 == NA, ING4 ==NA
I think I need to write a loop for that but as I am a beginner I am lost how to do it. Could you kindly help me with it?
Try this:
fun <- function(select, prefix = "ING", ncol = -1, data = cur_data()) {
select <- substitute(select)
out <- asplit(t(
apply(subset(data, select = eval(select)), 1, function(z) z[order(is.na(z))])
), 2)
names(out) <- paste0(prefix, seq_along(out))
if (ncol > 0) out <- out[seq_len(ncol)]
do.call(data.frame, out)
}
Parts:
apply(.., MARGIN=1, fun)
will call the function fun
across each row (MARGIN=1
) of the data.apply
returns a seemingly transposed matrix, so we t
ranspose it back to the dims we expectt(apply(...))
and asplit
it by column (okay, so perhaps I could have removed the t
and just asplit
on rows ... *shrug*)substitute(select)
and eval(select)
portion are to facilitate the "tidy-select" nature of calling it as we do, e.g., INT1:INT4
out[seq_len(ncol)]
filters the results to the first four columns as set by the ncol=
argument (we use ncol=4
)And its use:
library(dplyr)
DATA %>%
mutate(fun(INT1:INTX4, ncol=4))
# # A tibble: 10 × 18
# ID IDA DATE NR PAT INT1 INT2 INT3 INT4 INTX1 INTX2 INTX173 INTX4 KAT ING1 ING2 ING3 ING4
# <chr> <chr> <dttm> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 101 1 2011-03-24 01:00:00.000 CH-0001 101-1 245005 NA NA NA NA 276790 NA NA 0 245005 276790 NA NA
# 2 101 1 2010-07-01 01:00:00.000 CH-0001 101-1 280040 NA NA NA 275040 NA NA NA 0 280040 275040 NA NA
# 3 101 2 2010-07-01 01:00:00.000 CH-0002 101-2 280040 NA 280010 NA NA 7612645 NA 11198767 0 280040 280010 7612645 11198767
# 4 101 3 2010-07-08 01:00:00.000 CH-0003 101-3 280040 NA NA NA NA NA 3456878 NA 0 280040 3456878 NA NA
# 5 101 4 2010-07-08 01:00:00.000 CH-0004 101-4 280040 NA NA NA NA NA NA NA 0 280040 NA NA NA
# 6 101 5 2016-01-26 01:00:00.000 CH-0005 101-5 240040 NA NA NA NA NA NA NA 0 240040 NA NA NA
# 7 101 5 2012-02-23 01:00:00.000 CH-0005 101-5 240040 NA NA NA 240080 5078219 3289778 NA 0 240040 240080 5078219 3289778
# 8 101 1859 2017-09-27 01:00:00.000 CH-1859 101-1859 NA NA NA NA NA NA NA NA 1 NA NA NA NA
# 9 101 1860 2017-01-23 01:00:00.000 CH-1860 101-1860 NA NA 245035 NA NA NA NA NA 1 245035 NA NA NA
# 10 101 1861 2017-01-23 01:00:00.000 CH-1861 101-1861 NA NA NA NA NA NA NA 7025676 1 7025676 NA NA NA
cbind(DATA, fun(data = DATA, INT1:INTX4, ncol=4))
# ID IDA DATE NR PAT INT1 INT2 INT3 INT4 INTX1 INTX2 INTX173 INTX4 KAT ING1 ING2 ING3 ING4
# 1 101 1 2011-03-24 01:00:00 CH-0001 101-1 245005 NA NA NA NA 276790 NA NA 0 245005 276790 NA NA
# 2 101 1 2010-07-01 01:00:00 CH-0001 101-1 280040 NA NA NA 275040 NA NA NA 0 280040 275040 NA NA
# 3 101 2 2010-07-01 01:00:00 CH-0002 101-2 280040 NA 280010 NA NA 7612645 NA 11198767 0 280040 280010 7612645 11198767
# 4 101 3 2010-07-08 01:00:00 CH-0003 101-3 280040 NA NA NA NA NA 3456878 NA 0 280040 3456878 NA NA
# 5 101 4 2010-07-08 01:00:00 CH-0004 101-4 280040 NA NA NA NA NA NA NA 0 280040 NA NA NA
# 6 101 5 2016-01-26 01:00:00 CH-0005 101-5 240040 NA NA NA NA NA NA NA 0 240040 NA NA NA
# 7 101 5 2012-02-23 01:00:00 CH-0005 101-5 240040 NA NA NA 240080 5078219 3289778 NA 0 240040 240080 5078219 3289778
# 8 101 1859 2017-09-27 01:00:00 CH-1859 101-1859 NA NA NA NA NA NA NA NA 1 NA NA NA NA
# 9 101 1860 2017-01-23 01:00:00 CH-1860 101-1860 NA NA 245035 NA NA NA NA NA 1 245035 NA NA NA
# 10 101 1861 2017-01-23 01:00:00 CH-1861 101-1861 NA NA NA NA NA NA NA 7025676 1 7025676 NA NA NA
Edited to only sort on NA
-ness, retaining the original order of non-null values.