I tried to converting tf2 keras model with Conv2DTranspose layer to tflite.
But after converting to tflite, this model generates automatically Shape
and Pack
operation. That is a quiet problem for me because these operation can't be supported by mobile gpu. Why tflite works like this and how do I fix it?
Tflite converting code:
def get_model():
inputs = tf.keras.Input(shape=(64, 64, 3))
outputs = keras.layers.Conv2DTranspose(3, 3, strides=2, padding="same", activation="relu", name="deconv1")(inputs)
model = keras.Model(inputs=inputs, outputs=outputs, name="custom")
x = tf.ones((1, 64, 64, 3))
y = model(x)
return model
def convert_model(saved_model_dir, tflite_save_dir):
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float32]
tflite_model = converter.convert()
with open(tflite_save_dir, "wb") as f:
f.write(tflite_model)
if __name__=="__main__":
model = get_model()
current_path = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(current_path, "custom/1/")
tf.saved_model.save(model, save_dir)
tflite_save_dir = os.path.join(current_path, "my_model.tflite")
convert_model(save_dir, tflite_save_dir)
test_tflite(tflite_save_dir)
Tflite Model Visualizing:
P.S. tf.compat.v1.layers.conv2d_transpose
graph not generate Shape
-StridedSlice
-Pack
operation. That means tf.compat.v1.layers.conv2d_transpose can run on the mobile gpu. Why does this difference occur?
Tflite converting code:
tfv1 = tf.compat.v1
def generate_tflite_model_from_v1(saved_model_dir):
tflite_save_dir = os.path.join(saved_model_dir, "my_model_tfv1.tflite")
with tf.Graph().as_default() as graph:
inputs = tfv1.placeholder(tf.float32, shape=[1, 64, 64, 3])
x = tfv1.layers.conv2d_transpose(inputs, 3, 3, strides=2, padding="same", name="deconv1")
outputs = tf.nn.relu(x)
with graph.as_default(), tfv1.Session(graph=graph) as session:
session.run(tfv1.global_variables_initializer())
converter = tfv1.lite.TFLiteConverter.from_session(
session, input_tensors=[inputs], output_tensors=[outputs])
with open(tflite_save_dir, "wb") as f:
f.write(converter.convert())
I found the solution.
It is quite simple: specify the batch size in model's input.
def get_model():
inputs = tf.keras.Input(shape=(64, 64, 3), batch_size=1) # specify batch size
outputs = keras.layers.Conv2DTranspose(3, 3, strides=2, padding="same", activation="relu", name="deconv1")(inputs)
model = keras.Model(inputs=inputs, outputs=outputs, name="custom")
x = tf.ones((1, 64, 64, 3))
y = model(x)
return model
def convert_model(saved_model_dir, tflite_save_dir):
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float32]
tflite_model = converter.convert()
with open(tflite_save_dir, "wb") as f:
f.write(tflite_model)
if __name__=="__main__":
model = get_model()
current_path = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(current_path, "custom/1/")
tf.saved_model.save(model, save_dir)
tflite_save_dir = os.path.join(current_path, "my_model.tflite")
convert_model(save_dir, tflite_save_dir)
test_tflite(tflite_save_dir)
Then, you can get the same model compared to tf1's graph.