I have a dataset in AzureML which has 2 CSV files, I am trying to mount this dataset and utilize it in AzureML notebook but corresponding job is getting failed and code throwing permission denied error at run.wait_for_completion()
Below is the AzureML notebook code
from azureml.core import Workspace, Experiment, Dataset, ScriptRunConfig, Environment
# set workspace
ws = Workspace.from_config()
dataset = Dataset.get_by_name(ws, "<dataset-name>")
compute_target = ws.compute_targets["<compute-name>"]
env = Environment.get(ws, "<environment-name>")
exp = Experiment(ws, "<experiment-name>")
# mount dataset
input_data = dataset.as_mount()
src = ScriptRunConfig(source_directory="test",
script='test.py',
arguments=['--data_folder', input_data],
compute_target=compute_target,
environment=env)
# submit job
run = exp.submit(config=src)
# monitor run
run.wait_for_completion()
test.py
import pandas as pd
import argparse
import os
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--data_folder", type=str)
args = ap.parse_args()
def main():
data1 = pd.read_csv(os.path.join(args.data_folder, 'file1.csv'))
data2 = pd.read_csv(os.path.join(args.data_folder, 'file2.csv'))
if __name__ == "__main__":
main()
Any suggestion would be of great help
Issue got resolved, I had to register the dataset in AzureML with proper configurations