If I have three points and always want the visible face should be the side that is "facing" from origo, is there a shortcut to calculate the normal of the plane ?
Like this
mesh.Positions.Add(p0);
mesh.Positions.Add(p1);
mesh.Positions.Add(p2);
mesh.TriangleIndices.Add(0);
mesh.TriangleIndices.Add(1);
mesh.TriangleIndices.Add(2);
normal = Vector3D(1,1,1);
mesh.Normals.Add(normal);
mesh.Normals.Add(normal);
mesh.Normals.Add(normal);
model = new GeometryModel3D(mesh, material);
Or do I have to calculate the normal every time ?
If I have to calculate the normal, what is the algorithm for that, I have looked on the internet and tried a couple methods but they make me suspicious, like this one.
normal = CalculateNormal(p0, p1, p2);
Where CalculateNormal is
public static Vector3D CalculateNormal(Point3D p0, Point3D p1, Point3D p2)
{
Vector3D v0 = new Vector3D(p1.X - p0.X, p1.Y - p0.Y, p1.Z - p0.Z);
Vector3D v1 = new Vector3D(p1.X - p2.X, p1.Y - p2.Y, p2.Z - p1.Z);
return Vector3D.CrossProduct(v0, v1);
}
should it not be
Vector3D v1 = new Vector3D(p1.X - p2.X, p1.Y - p2.Y, p1.Z - p2.Z);
instead ?
/Stefan
The following works well
private Model3DGroup CreateTriangleSide(Point3D p0, Point3D p1, Point3D p2, Material material)
{
MeshGeometry3D mesh = null;
GeometryModel3D model = null;
Model3DGroup group = new Model3DGroup();
Vector3D normal;
//
// Front side of jagged part
//
mesh = new MeshGeometry3D();
mesh.Positions.Add(p0);
mesh.Positions.Add(p1);
mesh.Positions.Add(p2);
mesh.TriangleIndices.Add(0);
mesh.TriangleIndices.Add(1);
mesh.TriangleIndices.Add(2);
normal = CalculateNormal(p0, p1, p2);
normal = Normalize(normal);
mesh.Normals.Add(normal);
mesh.Normals.Add(normal);
mesh.Normals.Add(normal);
model = new GeometryModel3D(mesh, material);
group.Children.Add(model);
//
// Front side of the surface below the jagged edge
//
Point3D p3 = new Point3D(p1.X, p1.Y, bh);
Point3D p4 = new Point3D(p2.X, p2.Y, bh);
return group;
}
public const double RADDEGC = (Math.PI / 180.0);
public enum ANGLETYPE { RAD, DEG };
/*
* Takes the angle and the Z value to create a 3D point in space
*
* @param angle The angle
* @param radius The radius of the circle
* @param z The z value
* @param t The angle type, for example RAD (radians) or DEG (degress
*
*/
public static Point3D CP(double radius, double angle, double z = 0, ANGLETYPE angtype = ANGLETYPE.RAD)
{
Point3D p = new Point3D();
p.Z = z;
//
if (angtype == ANGLETYPE.RAD)
{
p.X = radius * Math.Cos(angle);
p.Y = radius * Math.Sin(angle);
}
else
{
p.X = radius * Math.Cos(angle * RADDEGC);
p.Y = radius * Math.Sin(angle * RADDEGC);
}
return p;
}
public static Vector3D CalculateNormal(Point3D p0, Point3D p1, Point3D p2)
{
Vector3D a1 = new Vector3D(p1.X - p0.X, p1.Y - p0.Y, p1.Z - p0.Z);
Vector3D b1 = new Vector3D(p2.X - p0.X, p2.Y - p0.Y, p2.Z - p0.Z);
Vector3D dir = Vector3D.CrossProduct(a1, b1);
return dir;
}
public static Vector3D Normalize(Vector3D norm)
{
double fac1 = Math.Sqrt((norm.X * norm.X) + (norm.Y * norm.Y) + (norm.Z * norm.Z));
if (fac1 == 0)
{
return norm;
}
norm = new Vector3D(norm.X / fac1, norm.Y / fac1, norm.Z / fac1);
return norm;
}