Search code examples
apache-flinkflink-streaming

Share data between task slots in Flink JVM memory


I have 5 different jobs running in 5 task slots. They all read from Kafka and sink back to Kafka. Kafka load is about 200K messages/sec.

I have another job, lets say ,job6 which needs to get some information from these 5 jobs. For each device we make some calculations in those 5 jobs, and according the results of this calculations, in the 6. task I need to do something more.

As a first solution, I used sideOutputs in these 5 jobs and sent these additional info to an Kafka topic. Then my 6. job subscribed to it. But as the workload on Kafka was already very high, this solution doubled the workload on Kafka.

As all task slots run in the same task manager JVM, what I have in my mind is , developing custom RichSink and RichSource functions which use same static/singleton java object. As it will be static, I beleive all tasks will have access to same object. This object will keep a queue (java BlockingQueue).Instead of feeding data to Kafka, I will feed this queue in all tasks and 6.task will process the data received from this queue.

Please let me know if this is a good idea for a big distributed system. I assume clusters will not be a problem because after reading data from shared queue, I will call keyBy() so I hope Flink will handle that part. Also please let me know dangereous points and tips if you have.


Solution

  • You essentially have an in-memory data store for bridging between two jobs. One of several issues here is that if the Task Manager crashes, you lose this data, thus eliminating one of the key benefits of Flink (guaranteed at-least-once or exactly-once processing).

    You'd also have to ensure that you've got at least one of your job 6 source operators running in a slot on every TM instance. Flink doesn't yet support the ability to easily control which sub-tasks run in what slots, though if you set the downstream job's parallelism == the number of slots then you can work around that issue.

    I'm sure there are other issues, I just haven't spent much time thinking about it :)

    Depending on the version of Flink you're using, I wonder if Flink's new Table Store would be an option for you.