I need to shift valid values to the top the of dataframe withing each id
. Here is an example dataset:
df <- data.frame(id = c(1,1,1,2,2,2,3,3,3,3),
itemid = c(1,2,3,1,2,3,1,2,3,4),
values = c(1,NA,0,NA,NA,0,1,NA,0,NA))
df
id itemid values
1 1 1 1
2 1 2 NA
3 1 3 0
4 2 1 NA
5 2 2 NA
6 2 3 0
7 3 1 1
8 3 2 NA
9 3 3 0
10 3 4 NA
excluding the id column, when there is a missing value in values
column, I want to shift all values aligned to the top for each id
.
How can I get this desired dataset below?
df1
id itemid values
1 1 1 1
2 1 2 0
3 1 3 NA
4 2 1 0
5 2 2 NA
6 2 3 NA
7 3 1 1
8 3 2 0
9 3 3 NA
10 3 4 NA
Using tidyverse
you can arrange
by whether values
is missing or not (which will put those at the bottom).
library(tidyverse)
df %>%
arrange(id, is.na(values))
Output
id itemid values
<dbl> <dbl> <dbl>
1 1 1 1
2 1 3 0
3 1 2 NA
4 2 3 0
5 2 1 NA
6 2 2 NA
7 3 1 1
8 3 3 0
9 3 2 NA
10 3 4 NA
Or, if you wish to retain the same order for itemid
and other columns, you can use mutate
to specifically order columns of interest (like values
). Other answers provide good solutions, such as @Santiago and @ThomasIsCoding. If you have multiple columns of interest to move NA
to the bottom per group, you can also try:
df %>%
group_by(id) %>%
mutate(across(.cols = values, ~values[order(is.na(.))]))
where the .cols argument would contain the columns to transform and reorder independently.
Output
id itemid values
<dbl> <dbl> <dbl>
1 1 1 1
2 1 2 0
3 1 3 NA
4 2 1 0
5 2 2 NA
6 2 3 NA
7 3 1 1
8 3 2 0
9 3 3 NA
10 3 4 NA