Search code examples
pythonpandasdataframetime-seriesrolling-computation

Pandas lagged rolling average on aggregate data with multiple groups and missing dates


I'd like to calculate a lagged rolling average on a complicated time-series dataset. Consider the toy example as follows:

import numpy as np
import pandas as pd

np.random.seed(101)

fruit = ['apples', 'apples', 'apples', 'oranges', 'apples', 'oranges', 'oranges',
         'oranges', 'apples', 'oranges', 'apples', 'apples']
people = ['alice']*6+['bob']*6
date = ['2022-01-01', '2022-01-03', '2022-01-04', '2022-01-04', '2022-01-11', '2022-01-11',
         '2022-01-04', '2022-01-05', '2022-01-05', '2022-01-20', '2022-01-20', '2022-01-25']
count = np.random.poisson(4,size=12)
weight_per = np.round(np.random.uniform(1,3,size=12),2)

df = pd.DataFrame({'date':date, 'people':people, 'fruit':fruit,
                   'count':count, 'weight':weight_per*count})
df['date'] = pd.to_datetime(df.date)

This results in the following DataFrame:

    date        people  fruit   count   weight
0   2022-01-01  alice   apples  2       2.72
1   2022-01-03  alice   apples  6       11.28
2   2022-01-04  alice   apples  5       13.80
3   2022-01-04  alice   oranges 3       8.70
4   2022-01-11  alice   apples  2       3.92
5   2022-01-11  alice   oranges 3       5.76
6   2022-01-04  bob     oranges 8       18.16
7   2022-01-05  bob     oranges 5       8.25
8   2022-01-05  bob     apples  5       6.20
9   2022-01-20  bob     oranges 4       4.40
10  2022-01-20  bob     apples  2       4.56
11  2022-01-25  bob     apples  2       5.24

Now I'd like to add a column representing the average weight per fruit for the previous 7 days: wgt_per_frt_prev_7d. It should be defined as the sum of all the fruit weights divided by the sum of all the fruit counts for the past 7 days, not including the current day. While there are many ways to brute force this answer, I'm looking for something with relatively good time complexity. If I were to calculate this column by hand, these would be the calculations and expected results:

df['wgt_per_frt_prev_7d'] = np.nan

df.loc[1, 'wgt_per_frt_prev_7d'] = 2.72/2 # row 0

df.loc[2, 'wgt_per_frt_prev_7d'] = (2.72+11.28)/(2+6) # row 0 and 1
df.loc[3, 'wgt_per_frt_prev_7d'] = (2.72+11.28)/(2+6)

df.loc[4, 'wgt_per_frt_prev_7d'] = (8.70+13.80+6.20+8.25+18.16)/(3+5+5+5+8) # row 2,3,6,7,8
df.loc[5, 'wgt_per_frt_prev_7d'] = (8.70+13.80+6.20+8.25+18.16)/(3+5+5+5+8)

df.loc[6, 'wgt_per_frt_prev_7d'] = (2.72+11.28)/(2+6) # row 0,1

df.loc[7, 'wgt_per_frt_prev_7d'] = (8.70+13.80+2.72+11.28+18.16)/(3+5+6+2+8) # row 0,1,2,3,6
df.loc[8, 'wgt_per_frt_prev_7d'] = (8.70+13.80+2.72+11.28+18.16)/(3+5+6+2+8)

df.loc[11, 'wgt_per_frt_prev_7d'] = (4.40+4.56)/(2+4) # row 9,10

Final DF:


    date        people  fruit   count   weight  wgt_per_frt_prev_7d
0   2022-01-01  alice   apples  2       2.72    NaN
1   2022-01-03  alice   apples  6       11.28   1.360000
2   2022-01-04  alice   apples  5       13.80   1.750000
3   2022-01-04  alice   oranges 3       8.70    1.750000
4   2022-01-11  alice   apples  2       3.92    2.119615
5   2022-01-11  alice   oranges 3       5.76    2.119615
6   2022-01-04  bob     oranges 8       18.16   1.750000
7   2022-01-05  bob     oranges 5       8.25    2.277500
8   2022-01-05  bob     apples  5       6.20    2.277500
9   2022-01-20  bob     oranges 4       4.40    NaN
10  2022-01-20  bob     apples  2       4.56    NaN
11  2022-01-25  bob     apples  2       5.24    1.493333

EDIT

The final column I'd like to add is wgt_per_apl_prev_7d, which only considers the apple weights when calculating this field, but still applies to all rows, even rows with just oranges. The output of this calculation should be as follows:

    date        people  fruit   count   weight  wgt_per_frt_prev_7d wgt_per_apl_prev_7d
0   2022-01-01  alice   apples  2       2.72    NaN                NaN
1   2022-01-03  alice   apples  6       11.28   1.360000      1.360000
2   2022-01-04  alice   apples  5       13.80   1.750000      1.750000
3   2022-01-04  alice   oranges 3       8.70    1.750000      1.750000
4   2022-01-11  alice   apples  2       3.92    2.119615      2.000000
5   2022-01-11  alice   oranges 3       5.76    2.119615      2.000000
6   2022-01-04  bob     oranges 8       18.16   1.750000      1.750000
7   2022-01-05  bob     oranges 5       8.25    2.277500      2.138462
8   2022-01-05  bob     apples  5       6.20    2.277500      2.138462
9   2022-01-20  bob     oranges 4       4.40    NaN                NaN
10  2022-01-20  bob     apples  2       4.56    NaN                NaN
11  2022-01-25  bob     apples  2       5.24    1.493333      2.280000

Solution

  • Try this

    df2 = df[['date', 'count', 'weight']].groupby('date').sum()
    df2 = df2.rolling('8D').apply(np.sum, raw=True) - df2
    df = df.merge((df2['weight']/df2['count']).rename('avg').to_frame().reset_index(), on='date', how='left')
    
    df2 = df[df['fruit'] == 'apples'][['date', 'count', 'weight']].groupby('date').sum()
    df2 = df2.rolling('8D').apply(np.sum, raw=True) - df2
    df = df.merge((df2['weight']/df2['count']).rename('avg_apple').to_frame().reset_index(), on='date', how='left')
    

    Output

        date        people  fruit   count   weight  avg        avg_apple
    0   2022-01-01  alice   apples  2       2.72    NaN        NaN
    1   2022-01-03  alice   apples  6       11.28   1.360000   1.360000
    2   2022-01-04  alice   apples  5       13.80   1.750000   1.750000
    3   2022-01-04  alice   oranges 3       8.70    1.750000   1.750000
    4   2022-01-11  alice   apples  2       3.92    2.119615   2.000000
    5   2022-01-11  alice   oranges 3       5.76    2.119615   2.000000
    6   2022-01-04  bob     oranges 8       18.16   1.750000   1.750000
    7   2022-01-05  bob     oranges 5       8.25    2.277500   2.138462
    8   2022-01-05  bob     apples  5       6.20    2.277500   2.138462
    9   2022-01-20  bob     oranges 4       4.40    NaN        NaN
    10  2022-01-20  bob     apples  2       4.56    NaN        NaN
    11  2022-01-25  bob     apples  2       5.24    1.493333   2.280000