currently I'm struggling to find a good way to perform the Hansen/Sargan tests of Overidentification restrictions within a Three-Stage Least Squares model (3SLS) in panel data using R. I was digging the whole day in different networks and couldn't find a way of depicting the tests in R using the well-known systemfit package.
Currently, my code is simple.
violence_c_3sls <- Crime ~ ln_GDP +I(ln_GDP^2) + ln_Gini
income_c_3sls <-ln_GDP ~ Crime + ln_Gini
gini_c_3sls <- ln_Gini ~ ln_GDP + I(ln_GDP^2) + Crime
inst <- ~ Educ_Gvmnt_Exp + I(Educ_Gvmnt_Exp^2)+ Health_Exp + Pov_Head_Count_1.9
system_c_3sls <- list(violence_c_3sls, income_c_3sls, gini_c_3sls)
fitsur_c_3sls <-systemfit(system_c_3sls, "3SLS",inst=inst, data=df_new, methodResidCov = "noDfCor" )
summary(fitsur_c_3sls)
However, adding more instruments to create an over-identified system do not yield in an output of the Hansen/Sargan test, thus I assume the test should be executed aside from the output and probably associated to systemfit class object.
Thanks in advance.
With g
equations, l
exogenous variables, and k
regressors, the Sargan test for 3SLS is
where u
is the stacked residuals, \Sigma
is the estimated residual covariance, and P_W
is the projection matrix on the exogenous variables. See Ch 12.4 from Davidson & MacKinnon ETM.
Calculating the Sargan test from systemfit should look something like this:
sargan.systemfit=function(results3sls){
result <- list()
u=as.matrix(resid(results3sls)) #model residuals, n x n_eq
n_eq=length(results3sls$eq) # number of equations
n=nrow(u) #number of observations
n_reg=length(coef(results3sls)) # total number of regressors
w=model.matrix(results3sls,which='z') #Matrix of instruments, in block diagonal form with one block per equation
#Need to aggregate into a single block (in case different instruments used per equation)
w_list=lapply(X = 1:n_eq,FUN = function(eq_i){
this_eq_label=results3sls$eq[[eq_i]]$eqnLabel
this_w=w[str_detect(rownames(w),this_eq_label),str_detect(colnames(w),this_eq_label)]
colnames(this_w)=str_remove(colnames(this_w),paste0(this_eq_label,'_'))
return(this_w)
})
w=do.call(cbind,w_list)
w=w[,!duplicated(colnames(w))]
n_inst=ncol(w) #w is n x n_inst, where n_inst is the number of unique instruments/exogenous variables
#estimate residual variance (or use residCov, should be asymptotically equivalent)
var_u=crossprod(u)/n #var_u=results3sls$residCov
P_w=w%*%solve(crossprod(w))%*%t(w) #Projection matrix on instruments w
#as.numeric(u) vectorizes the residuals into a n_eq*n x 1 vector.
result$statistic <- as.numeric(t(as.numeric(u))%*%kronecker(solve(var_u),P_w)%*%as.numeric(u))
result$df <- n_inst*n_eq-n_reg
result$p.value <- 1 - pchisq(result$statistic, result$df)
result$method = paste("Sargan over-identifying restrictions test")
return(result)
}