I have the following dictionary:
my_dict = {'fields': ['id': 1.0,
'name': 'aaa',
'type': 'string'},
{'id': 3.0,
'name': 'eee',
'type': 'string'},
{'id': nan,
'name': 'bbb',
'type': 'string'},
{'id': 4.0,
'name': 'ccc',
'type': 'string'},
{'id': nan,
'name': 'ddd',
'type': 'string'}],
'type': 'struct'
}
From this dictionary, I would like to drop the dictionary with the id
value nan
value and would like to get the following.
my_updated_dict = {'fields': ['id': 1.0,
'name': 'aaa',
'type': 'string'},
{'id': 3.0,
'name': 'eee',
'type': 'string'},
{'id': 4.0,
'name': 'ccc',
'type': 'string'}],
'type': 'struct'
}
I was trying changing to data frame and dropping the id
value with the nan
value and changing to dictionary back but couldn't get the intended result.
my_updated_dict = pd.DataFrame(my_dict ).dropna().to_dict('list')
I do not know why would you need pandas for that if u can simply do:
my_dict["fields"] = [i for i in my_dict["fields"] if not np.isnan(i["id"])]
** UPDATE **
if you really do need for some reason to use pandas, you may try this constructiion:
my_dict["fields"] = pd.Series(my_dict["fields"]).apply(pd.Series).dropna().to_dict(orient="records")
though I do not see any advantages over simple list comprehension, except may be on big volume of information.