I borrow a dataset from SPSS prepared by Julie Pallant's SPSS Survival Manual and run it on R.
I select three columns to run correlation and significance test: toptim, tnegaff, sex. I select the columns using select: df <- survey %>% select(toptim, tnegaff, sex)
.
Then, problems emerge.
cor
and resort to correlate
. Why is there error and any difference between the two methods?df %>% group_by(sex) %>% summarise(cor = correlate(toptim, tnegaff))
<- OK (male = 0.22 female = 0.394)
df %>% group_by(sex) %>% summarise(cor = cor(toptim, tnegaff))
<- failed, returns with NA
Error in `summarise()`:
! Problem while computing `cor = cor.test(toptim, tnegaff)`.
✖ `cor` must be a vector, not a `htest` object.
ℹ The error occurred in group 1: sex = 1.
Then I try to follow past examples and use broom::tidy
, but no output for p-values....
> df %>% group_by(sex) %>% broom::tidy(cor.test(toptim, tnegaff))
# A tibble: 3 × 13
column n mean sd median trimmed mad min max range skew kurtosis se
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 toptim 435 22.1 4.43 22 22.3 3 7 30 23 NA NA 0.212
2 tnegaff 435 19.4 7.07 18 18.6 4 10 39 29 NA NA 0.339
3 sex 439 1.58 0.494 2 1.58 0 1 2 1 -0.318 1.10 0.0236
How can I get the result? May I know the reason for such failure?
Thank you for your answers in advance.
It's trying to use all values and coming across NA
s I presume. If you set to use "complete.obs"
then it should work. For the cor.test
part wrap the output in a list
function to use the tibble's capabilities to have a column of a vector of objects.
For the final tidying and getting p-values, use map(cor.test, broom::tidy)
then tidyr::unnest()
to get a full and tidy dataframe.
That's a few steps to go through but hope it helps!
df <- haven::read_sav("survey.sav")
library(tidyverse)
df %>%
group_by(sex) %>%
summarise(cor = cor(toptim, tnegaff, use = "complete.obs"),
cor.test = list(cor.test(toptim, tnegaff))) %>%
mutate(tidy_out = map(cor.test, broom::tidy)) %>%
unnest(tidy_out)
#> # A tibble: 2 × 11
#> sex cor cor.t…¹ estim…² stati…³ p.value param…⁴ conf.…⁵ conf.…⁶ method
#> <dbl+l> <dbl> <list> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <chr>
#> 1 1 [MAL… -0.220 <htest> -0.220 -3.04 2.73e- 3 182 -0.353 -0.0775 Pears…
#> 2 2 [FEM… -0.394 <htest> -0.394 -6.75 1.06e-10 248 -0.494 -0.284 Pears…
#> # … with 1 more variable: alternative <chr>, and abbreviated variable names
#> # ¹cor.test, ²estimate, ³statistic, ⁴parameter, ⁵conf.low, ⁶conf.high
Borrowing the function from here you can examine the difference in correlation coefficients between sexes like this:
cor.diff.test(df$toptim[df$sex == 1], df$tnegaff[df$sex == 1], df$toptim[df$sex == 2], df$tnegaff[df$sex == 2])