I have a fs2 Stream Stream[F, C
] where C <: Coproduct
. And I want to transform it into a Stream[F, H]
where H <: HList
. This HList should contain all members that the coproduct C
had.
So, essentially, a Pipe[F, C, H]
.
The fs2 Pipe will work by waiting for at least one of each of the coproduct's members to be pulled, and then once at least one of each are pulled, finally combine it into a HList and output it.
So, it will be used pretty much like so:
type MyCoprod = A :+: B :+: C :+: CNil
type MyHList = A :: B :: C :: HNil
val stream: Stream[F, MyHList] = Stream
.emits(List(A, B, C)) // my coproducts
.through(pullAll) // i want to wait for A, B, C to pulled at least once and outputted
.map { hlist => ... }
I am very very new to Shapeless, and this is what I could think of before hitting a roadblock:
trait WaitFor[F[_], C <: Coproduct] {
type Out <: HList
def apply: Pipe[F, C, Out]
}
object WaitFor {
type Aux[F[_], C <: Coproduct, Out0 <: HList] =
WaitFor[F, C] { type Out = Out0 }
implicit def make[F[_], C <: Coproduct, L <: HList](implicit
toHList: ToHList.Aux[C, L]
): Aux[F, C, L] = new WaitFor.Aux[F, C, L] {
override type Out = L
override def apply: Pipe[F, C, Out] = {
def go(s2: Stream[F, C], currHList: L): Pull[F, L, Unit] = {
s2.pull.uncons1.flatMap {
case Some((coproduct, s3)) => {
// add or update coproduct member to currHList
// if currHList is the same as L (our output type) then output it (Pull.output1(currHList)) and clear currHList
// if not, keep iterating:
go(s3, ???)
}
case None => Pull.done
}
}
go(s1, ???).stream
}
}
def pullAll[F[_], C <: Coproduct](
stream: Stream[F, C]
)(implicit ev: WaitFor[F, C]): Stream[F, ev.Out] = {
stream.through(ev.apply)
}
}
My roadblock starts here:
override def apply: Pipe[F, C, Out] = ???
and that's when my knowledge of Shapeless exhausts.
My idea is to keep track of all coproduct members in a tuple (Option[C1], Option[C2], ...).
Once every element in the tuple is Some
, I'll covert them to a HList and output them in the Stream.
(I'll be using FS2 Pull to keep track of the state recursively so I'm not worried about that).
But my issue is that, at the value level, there's no way for me to know how long the tuple will be, and for me to construct a tuple.
Any pointers so I can solve this?
Thanks
Let's do it step by step:
A :+: B :+: C :+: CNil
A
, newest B
etcA :: B :: C :: HNil
HList
value, you should also reset your intermediate values storageOption[A] :: Option[B] :: Option[C] :: HNil
So, let's write a type class which would help us with it:
import shapeless._
// A type class for collecting Coproduct elements (last-wins)
// until they could be combined into an HList element
// Path-dependent types and Aux for better DX, e.g. when one
// would want Collector[MyType] without manually entering HLists
trait Collector[Input] {
type Cache
type Result
// pure computation of an updated cache
def updateState(newInput: Input, currentState: Cache): Cache
// returns Some if all elements of Cache are Some, None otherwise
def attemptConverting(updatedState: Cache): Option[Result]
// HLists of Nones
def emptyCache: Cache
}
object Collector {
type Aux[Input, Cache0, Result0] = Collector[Input] {
type Cache = Cache0
type Result = Result0
}
def apply[Input](implicit
collector: Collector[Input]
): Collector.Aux[Input, collector.Cache, collector.Result] =
collector
// obligatory empty Coproduct/HList case to terminate recursion
implicit val nilCollector: Collector.Aux[CNil, HNil, HNil] =
new Collector[CNil] {
type Cache = HNil
type Result = HNil
override def updateState(newInput: CNil, currentState: HNil): HNil = HNil
override def attemptConverting(updatedState: HNil): (Option[HNil]) =
Some(HNil)
override def emptyCache: HNil = HNil
}
// here we define the actual recursive derivation
implicit def consCollector[
Head,
InputTail <: Coproduct,
CacheTail <: HList,
ResultTail <: HList
](implicit
tailCollector: Collector.Aux[InputTail, CacheTail, ResultTail]
): Collector.Aux[
Head :+: InputTail,
Option[Head] :: CacheTail,
Head :: ResultTail
] = new Collector[Head :+: InputTail] {
type Cache = Option[Head] :: CacheTail
type Result = Head :: ResultTail
override def updateState(
newInput: Head :+: InputTail,
currentState: Option[Head] :: CacheTail
): Option[Head] :: CacheTail = newInput match {
case Inl(head) => Some(head) :: currentState.tail
case Inr(tail) =>
currentState.head :: tailCollector.updateState(
tail,
currentState.tail
)
}
override def attemptConverting(
updatedState: Option[Head] :: CacheTail
): Option[Head :: ResultTail] = for {
head <- updatedState.head
tail <- tailCollector.attemptConverting(updatedState.tail)
} yield head :: tail
override def emptyCache: Option[Head] :: CacheTail =
None :: tailCollector.emptyCache
}
}
This code doesn't assume how we would store our cache not how we would update it. So we might test it with some impure code:
import shapeless.ops.coproduct.Inject
type Input = String :+: Int :+: Double :+: CNil
val collector = Collector[Input]
// dirty, but good enough for demo
var cache = collector.emptyCache
LazyList[Input](
Inject[Input, String].apply("test1"),
Inject[Input, String].apply("test2"),
Inject[Input, String].apply("test3"),
Inject[Input, Int].apply(1),
Inject[Input, Int].apply(2),
Inject[Input, Int].apply(3),
Inject[Input, Double].apply(3),
Inject[Input, Double].apply(4),
Inject[Input, Double].apply(3),
Inject[Input, String].apply("test4"),
Inject[Input, Int].apply(4),
).foreach { input =>
val newCache = collector.updateState(input, cache)
collector.attemptConverting(newCache) match {
case Some(value) =>
println(s"Product computed: value!")
cache = collector.emptyCache
case None =>
cache = newCache
}
println(s"Current cache: $cache")
}
We can check with Scaste that it prints what we expect it would.
Current cache: Some(test1) :: None :: None :: HNil
Current cache: Some(test2) :: None :: None :: HNil
Current cache: Some(test3) :: None :: None :: HNil
Current cache: Some(test3) :: Some(1) :: None :: HNil
Current cache: Some(test3) :: Some(2) :: None :: HNil
Current cache: Some(test3) :: Some(3) :: None :: HNil
Product computed: test3 :: 3 :: 3.0 :: HNil!
Current cache: None :: None :: None :: HNil
Current cache: None :: None :: Some(4.0) :: HNil
Current cache: None :: None :: Some(3.0) :: HNil
Current cache: Some(test4) :: None :: Some(3.0) :: HNil
Product computed: test4 :: 4 :: 3.0 :: HNil!
Current cache: None :: None :: None :: HNil
Now, it's a matter of how we'll thread this intermediate result through the FS2 Stream. One way would be to use Ref
for {
// for easy passing of cache around
cacheRef <- Stream.eval(Ref[IO].of(collector.emptyCache))
// source of Coproducts
input <- Stream[IO, Input](
Inject[Input, String].apply("test1"),
Inject[Input, String].apply("test2"),
Inject[Input, String].apply("test3"),
Inject[Input, Int].apply(1),
Inject[Input, Int].apply(2),
Inject[Input, Int].apply(3),
Inject[Input, Double].apply(3)
)
updateCache = cacheRef.modify[Stream[IO, collector.Result]] { cache =>
val newCache = collector.updateState(input, cache)
collector.attemptConverting(newCache) match {
case Some(value) => collector.emptyCache -> Stream(value)
case None => newCache -> Stream.empty
}
}
// emits new HList only if all of its elements has been gathered
hlist <- Stream.eval(updateCache).flatten
} yield hlist
One might modify this code to fit their aesthetics: extract updateCache
to some function, use state monad or whatever. I guess turning it into pipe would be, e.g.:
// you might replace cats.effect.IO with F[_]: Monad, use something
// else instead of Ref, or whatever
def collectCoproductsToHList[Input](
implicit collector: Collector[Input]
): IO[Pipe[IO, Input, collector.Result]] =
Ref[IO].of(collector.emptyCache).map { cacheRef =>
val pipe: Pipe[IO, Input, collector.Result] = inputStream => for {
input <- inputStream
updateCache = cacheRef.modify[Stream[IO, collector.Result]] { cache =>
val newCache = collector.updateState(input, cache)
collector.attemptConverting(newCache) match {
case Some(value) => collector.emptyCache -> Stream(value)
case None => newCache -> Stream.empty
}
}
hlist <- Stream.eval(updateCache).flatten
} yield hlist
pipe
}