Search code examples
pytorchgenerative-adversarial-networkunsupervised-learning

torch.nn.functional.binary_cross_entropy and torch.nn.BCEloss() difference


I am trying to train a GAN model on anime face Dataset to generate anime faces. Here's my code-

from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import torchvision.transforms as T
import os
import torch
import torch.nn as nn
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
%matplotlib inline

def denorm(img_tensors):
    return img_tensors * stats[1][0] + stats[0][0]
def show_images(images, nmax=64):
    fig, ax = plt.subplots(figsize=(8, 8))
    ax.set_xticks([]); ax.set_yticks([])
    ax.imshow(make_grid(denorm(images.detach()[:nmax]), nrow=8).permute(1, 2, 0))

def show_batch(dl, nmax=64):
    for images, _ in dl:
        show_images(images, nmax)
        break

def get_default_device():
    """Pick GPU if available, else CPU"""
    if torch.cuda.is_available():
        return torch.device('cuda')
    else:
        return torch.device('cpu')
    
def to_device(data, device):
    """Move tensor(s) to chosen device"""
    if isinstance(data, (list,tuple)):
        return [to_device(x, device) for x in data]
    return data.to(device, non_blocking=True)

class DeviceDataLoader():
    """Wrap a dataloader to move data to a device"""
    def __init__(self, dl, device):
        self.dl = dl
        self.device = device
        
    def __iter__(self):
        """Yield a batch of data after moving it to device"""
        for b in self.dl: 
            yield to_device(b, self.device)

    def __len__(self):
        """Number of batches"""
        return len(self.dl)
device = get_default_device()
device
train_dl = DeviceDataLoader(train_dl, device)
discriminator = nn.Sequential(
    # in: 3 x 64 x 64

    nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(64),
    nn.LeakyReLU(0.2, inplace=True),
    # out: 64 x 32 x 32

    nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(128),
    nn.LeakyReLU(0.2, inplace=True),
    # out: 128 x 16 x 16

    nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(256),
    nn.LeakyReLU(0.2, inplace=True),
    # out: 256 x 8 x 8

    nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(512),
    nn.LeakyReLU(0.2, inplace=True),
    # out: 512 x 4 x 4

    nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),
    # out: 1 x 1 x 1

    nn.Flatten(),
    nn.Sigmoid())
discriminator = to_device(discriminator, device)
latent_size = 128
generator = nn.Sequential(
    # in: latent_size x 1 x 1

    nn.ConvTranspose2d(latent_size, 512, kernel_size=4, stride=1, padding=0, bias=False),
    nn.BatchNorm2d(512),
    nn.ReLU(True),
    # out: 512 x 4 x 4

    nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(256),
    nn.ReLU(True),
    # out: 256 x 8 x 8

    nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(128),
    nn.ReLU(True),
    # out: 128 x 16 x 16

    nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),
    nn.BatchNorm2d(64),
    nn.ReLU(True),
    # out: 64 x 32 x 32

    nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False),
    nn.Tanh()
    # out: 3 x 64 x 64
)
xb = torch.randn(batch_size, latent_size, 1, 1) # random latent tensors
fake_images = generator(xb)
print(fake_images.shape)
show_images(fake_images)
generator = to_device(generator, device)
def train_discriminator(real_images, opt_d):
    # Clear discriminator gradients
    opt_d.zero_grad()

    # Pass real images through discriminator
    real_preds = discriminator(real_images)
    real_targets = torch.ones(real_images.size(0), 1, device=device)
    real_loss = F.binary_cross_entropy(real_preds, real_targets)     # here nn.BCELoss() not working
    real_score = torch.mean(real_preds).item()
    
    # Generate fake images
    latent = torch.randn(batch_size, latent_size, 1, 1, device=device)
    fake_images = generator(latent)

    # Pass fake images through discriminator
    fake_targets = torch.zeros(fake_images.size(0), 1, device=device)
    fake_preds = discriminator(fake_images)
    fake_loss = F.binary_cross_entropy(fake_preds, fake_targets)    # here nn.BCELoss() not working
    fake_score = torch.mean(fake_preds).item()

    # Update discriminator weights
    loss = real_loss + fake_loss
    loss.backward()
    opt_d.step()
    return loss.item(), real_score, fake_score
def train_generator(opt_g):
    # Clear generator gradients
    opt_g.zero_grad()
    
    # Generate fake images
    latent = torch.randn(batch_size, latent_size, 1, 1, device=device)
    fake_images = generator(latent)
    
    # Try to fool the discriminator
    preds = discriminator(fake_images)
    targets = torch.ones(batch_size, 1, device=device)
    loss = F.binary_cross_entropy(preds, targets)     # here nn.BCELoss() not working
    
    # Update generator weights
    loss.backward()
    opt_g.step()
    
    return loss.item()
from torchvision.utils import save_image
sample_dir = 'generated'
os.makedirs(sample_dir, exist_ok=True)
def save_samples(index, latent_tensors, show=True):
    fake_images = generator(latent_tensors)
    fake_fname = 'generated-images-{0:0=4d}.png'.format(index)
    save_image(denorm(fake_images), os.path.join(sample_dir, fake_fname), nrow=8)
    print('Saving', fake_fname)
    if show:
        fig, ax = plt.subplots(figsize=(8, 8))
        ax.set_xticks([]); ax.set_yticks([])
        ax.imshow(make_grid(fake_images.cpu().detach(), nrow=8).permute(1, 2, 0))
fixed_latent = torch.randn(64, latent_size, 1, 1, device=device)
save_samples(0, fixed_latent)
from tqdm.notebook import tqdm
import torch.nn.functional as F
def fit(epochs, lr, start_idx=1):
    torch.cuda.empty_cache()
    
    # Losses & scores
    losses_g = []
    losses_d = []
    real_scores = []
    fake_scores = []
    
    # Create optimizers
    opt_d = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))
    opt_g = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
    
    for epoch in range(epochs):
        for real_images, _ in tqdm(train_dl):
            # Train discriminator
            loss_d, real_score, fake_score = train_discriminator(real_images, opt_d)
            # Train generator
            loss_g = train_generator(opt_g)
            
        # Record losses & scores
        losses_g.append(loss_g)
        losses_d.append(loss_d)
        real_scores.append(real_score)
        fake_scores.append(fake_score)
        
        # Log losses & scores (last batch)
        print("Epoch [{}/{}], loss_g: {:.4f}, loss_d: {:.4f}, real_score: {:.4f}, fake_score: {:.4f}".format(
            epoch+1, epochs, loss_g, loss_d, real_score, fake_score))
    
        # Save generated images
        save_samples(epoch+start_idx, fixed_latent, show=False)
    
    return losses_g, losses_d, real_scores, fake_scores
lr = 0.0002
epochs = 95
history = fit(epochs, lr)

The above code is working fine but before I was using nn.BCELoss from torch instead of binary_cross_entropy from torch.nn.functional in 'train_generator()' and 'train_discriminator()' methods above and I was getting the following error,

RuntimeError: Boolean value of Tensor with more than one value is ambiguous

I wonder if they both don't perform the same operation. Can you help me to understand the problem?


Solution

  • nn.BCELoss is a class. Unlike nn.functional.binary_cross_entropy, you have to instantiate it first before using it to calculate the loss. In you case,

    F.binary_cross_entropy(preds, targets)
    

    is equivalent to

    nn.BCELoss()(preds, targets)