I am trying to train a GAN model on anime face Dataset to generate anime faces. Here's my code-
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import torchvision.transforms as T
import os
import torch
import torch.nn as nn
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
%matplotlib inline
def denorm(img_tensors):
return img_tensors * stats[1][0] + stats[0][0]
def show_images(images, nmax=64):
fig, ax = plt.subplots(figsize=(8, 8))
ax.set_xticks([]); ax.set_yticks([])
ax.imshow(make_grid(denorm(images.detach()[:nmax]), nrow=8).permute(1, 2, 0))
def show_batch(dl, nmax=64):
for images, _ in dl:
show_images(images, nmax)
break
def get_default_device():
"""Pick GPU if available, else CPU"""
if torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu')
def to_device(data, device):
"""Move tensor(s) to chosen device"""
if isinstance(data, (list,tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
class DeviceDataLoader():
"""Wrap a dataloader to move data to a device"""
def __init__(self, dl, device):
self.dl = dl
self.device = device
def __iter__(self):
"""Yield a batch of data after moving it to device"""
for b in self.dl:
yield to_device(b, self.device)
def __len__(self):
"""Number of batches"""
return len(self.dl)
device = get_default_device()
device
train_dl = DeviceDataLoader(train_dl, device)
discriminator = nn.Sequential(
# in: 3 x 64 x 64
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.2, inplace=True),
# out: 64 x 32 x 32
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.LeakyReLU(0.2, inplace=True),
# out: 128 x 16 x 16
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.LeakyReLU(0.2, inplace=True),
# out: 256 x 8 x 8
nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.LeakyReLU(0.2, inplace=True),
# out: 512 x 4 x 4
nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),
# out: 1 x 1 x 1
nn.Flatten(),
nn.Sigmoid())
discriminator = to_device(discriminator, device)
latent_size = 128
generator = nn.Sequential(
# in: latent_size x 1 x 1
nn.ConvTranspose2d(latent_size, 512, kernel_size=4, stride=1, padding=0, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(True),
# out: 512 x 4 x 4
nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(True),
# out: 256 x 8 x 8
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(True),
# out: 128 x 16 x 16
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(True),
# out: 64 x 32 x 32
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1, bias=False),
nn.Tanh()
# out: 3 x 64 x 64
)
xb = torch.randn(batch_size, latent_size, 1, 1) # random latent tensors
fake_images = generator(xb)
print(fake_images.shape)
show_images(fake_images)
generator = to_device(generator, device)
def train_discriminator(real_images, opt_d):
# Clear discriminator gradients
opt_d.zero_grad()
# Pass real images through discriminator
real_preds = discriminator(real_images)
real_targets = torch.ones(real_images.size(0), 1, device=device)
real_loss = F.binary_cross_entropy(real_preds, real_targets) # here nn.BCELoss() not working
real_score = torch.mean(real_preds).item()
# Generate fake images
latent = torch.randn(batch_size, latent_size, 1, 1, device=device)
fake_images = generator(latent)
# Pass fake images through discriminator
fake_targets = torch.zeros(fake_images.size(0), 1, device=device)
fake_preds = discriminator(fake_images)
fake_loss = F.binary_cross_entropy(fake_preds, fake_targets) # here nn.BCELoss() not working
fake_score = torch.mean(fake_preds).item()
# Update discriminator weights
loss = real_loss + fake_loss
loss.backward()
opt_d.step()
return loss.item(), real_score, fake_score
def train_generator(opt_g):
# Clear generator gradients
opt_g.zero_grad()
# Generate fake images
latent = torch.randn(batch_size, latent_size, 1, 1, device=device)
fake_images = generator(latent)
# Try to fool the discriminator
preds = discriminator(fake_images)
targets = torch.ones(batch_size, 1, device=device)
loss = F.binary_cross_entropy(preds, targets) # here nn.BCELoss() not working
# Update generator weights
loss.backward()
opt_g.step()
return loss.item()
from torchvision.utils import save_image
sample_dir = 'generated'
os.makedirs(sample_dir, exist_ok=True)
def save_samples(index, latent_tensors, show=True):
fake_images = generator(latent_tensors)
fake_fname = 'generated-images-{0:0=4d}.png'.format(index)
save_image(denorm(fake_images), os.path.join(sample_dir, fake_fname), nrow=8)
print('Saving', fake_fname)
if show:
fig, ax = plt.subplots(figsize=(8, 8))
ax.set_xticks([]); ax.set_yticks([])
ax.imshow(make_grid(fake_images.cpu().detach(), nrow=8).permute(1, 2, 0))
fixed_latent = torch.randn(64, latent_size, 1, 1, device=device)
save_samples(0, fixed_latent)
from tqdm.notebook import tqdm
import torch.nn.functional as F
def fit(epochs, lr, start_idx=1):
torch.cuda.empty_cache()
# Losses & scores
losses_g = []
losses_d = []
real_scores = []
fake_scores = []
# Create optimizers
opt_d = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))
opt_g = torch.optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
for epoch in range(epochs):
for real_images, _ in tqdm(train_dl):
# Train discriminator
loss_d, real_score, fake_score = train_discriminator(real_images, opt_d)
# Train generator
loss_g = train_generator(opt_g)
# Record losses & scores
losses_g.append(loss_g)
losses_d.append(loss_d)
real_scores.append(real_score)
fake_scores.append(fake_score)
# Log losses & scores (last batch)
print("Epoch [{}/{}], loss_g: {:.4f}, loss_d: {:.4f}, real_score: {:.4f}, fake_score: {:.4f}".format(
epoch+1, epochs, loss_g, loss_d, real_score, fake_score))
# Save generated images
save_samples(epoch+start_idx, fixed_latent, show=False)
return losses_g, losses_d, real_scores, fake_scores
lr = 0.0002
epochs = 95
history = fit(epochs, lr)
The above code is working fine but before I was using nn.BCELoss from torch instead of binary_cross_entropy from torch.nn.functional in 'train_generator()' and 'train_discriminator()' methods above and I was getting the following error,
RuntimeError: Boolean value of Tensor with more than one value is ambiguous
I wonder if they both don't perform the same operation. Can you help me to understand the problem?
nn.BCELoss
is a class. Unlike nn.functional.binary_cross_entropy
, you have to instantiate it first before using it to calculate the loss. In you case,
F.binary_cross_entropy(preds, targets)
is equivalent to
nn.BCELoss()(preds, targets)